REFERENCES

1. Xie, H.; Qin, Z.; Li, G. Y.; Juang, B. H. Deep learning enabled semantic communication systems. IEEE. Trans. Signal. Process. 2021, 69, 2663-75.

2. Zhou, Q.; Li, R.; Zhao, Z.; Peng, C.; Zhang, H. Semantic communication with adaptive universal transformer. IEEE. Wirel. Commun. Lett. 2022, 11, 453-7.

3. Lee, C. H.; Lin, J. W.; Chen, P. H.; Chang, Y. C. Deep learning-constructed joint transmission-recognition for Internet of Things. IEEE. Access. 2019, 7, 76547-61.

4. Zhang, G.; Hu, Q.; Qin, Z.; Cai, Y.; Yu, G.; Tao, X. A unified multi-task semantic communication system for multimodal data. IEEE. Trans. Commun. 2024, 72, 4101-16.

5. Kipf, T. N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907. Available online: https://doi.org/10.48550/arXiv.1609.02907. (accessed 29 Sep 2025).

6. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. arXiv 2017, arXiv:1710.10903. Available online: https://doi.org/10.48550/arXiv.1710.10903. (accessed 29 Sep 2025).

7. Han, Y.; Wang, P.; Kundu, S.; Ding, Y.; Wang, Z. Vision HGNN: an image is more than a graph of nodes. In 2023 IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France. October 01-06, 2023. IEEE; 2023. pp. 19821-31.

8. Zhao, L.; Song, Y.; Zhang, C.; Liu, Y.; Wang, P.; Lin, T. T-GCN: a temporal graph convolutional network for traffic prediction. IEEE. Trans. Intell. Transp. Syst. 2020, 21, 3848-58.

9. Shannon, C. E. A mathematical theory of communication. Bell. Syst. Tech. J. 1948, 27, 379-423.

10. Bao, J.; Basu, P.; Dean, M.; Partridge, C.; Swami, A.; Leland, W. Towards a theory of semantic communication. In 2011 IEEE Network Science Workshop, West Point, USA. June 22-24, 2011. IEEE; 2011. pp. 110-7.

11. Zhong, Y. A theory of semantic information. China. Commun. 2017, 14, 1-17.

12. Shi, G.; Xiao, Y.; Li, Y.; Xie, X. From semantic communication to semantic-aware networking: model, architecture, and open problems. IEEE. Commun. Mag. 2021, 59, 44-50.

13. Niu, K.; Dai, J.; Zhang, P.; Yao, S.; Wang, S. Semantic communication for 6G. Mobile. Commun. 2021, 45, 85-90.

14. Liu, W.; Wang, M.; Bai, B. Efficient semantic communication method for bandwidth constrained scenarios. J. Xidian. Univ. 2024, 51, 9-18.

15. Lu, Y.; Dai, J.; Niu, K. Key technologies of semantic communication for industrial networks. Mobile. Commun. 2023, 47, 18-24.

16. Cavagna, A.; Li, N.; Iosifidis, A. Semantic communication enabling robust edge intelligence for time-critical IoT applications. In 2023 IEEE International Conference on Communications Workshops (ICC Workshops), Rome, Italy. May 28 - Jun 01, 2023. IEEE; 2023. pp. 1617-22.

17. Wang, L.; Wu, W.; Zhou, F.; Yang, Z.; Qin, Z.; Wu, Q. Adaptive resource allocation for semantic communication networks. IEEE. Trans. Commun. 2024, 72, 6900-16.

18. Luo, X.; Chen, H. H.; Guo, Q. Semantic communications: overview, open issues, and future research directions. IEEE. Wirel. Commun. 2022, 29, 210-9.

19. Farsad, N.; Rao, M.; Goldsmith, A. Deep learning for joint source-channel coding of text. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, Canada. April 15-20, 2018. IEEE; 2018. pp. 2326-30.

20. Pennington, J.; Socher, R.; Manning, C. GloVe: global vectors for word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar. Association for Computational Linguistics; 2014. pp. 1532-43.

21. Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv 2014, arXiv:1409.0473. Available online: https://doi.org/10.48550/arXiv.1409.0473. (accessed 29 Sep 2025).

22. Wu, Y.; Schuster, M.; Chen, Z.; et al. Google’s neural machine translation system: bridging the gap between human and machine translation. arXiv 2016, arXiv:1609.08144. Available online: https://doi.org/10.48550/arXiv.1609.08144. (accessed 29 Sep 2025).

23. Graves, A. Sequence transduction with recurrent neural networks. arXiv 2012, arXiv:1211.3711. Available online: https://doi.org/10.48550/arXiv.1211.3711. (accessed 29 Sep 2025).

24. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space. arXiv 2013, arXiv:1301.3781. Available online: https://doi.org/10.48550/arXiv.1301.3781. (accessed 29 Sep 2025).

25. Sana, M.; Strinati, E. C. Learning semantics: an opportunity for effective 6G communications. arXiv 2021, arXiv:2110.08049. Available online: https://doi.org/10.48550/arXiv.2110.08049. (accessed 29 Sep 2025).

26. Dehghani, M.; Gouws, S.; Vinyals, O.; Uszkoreit, J.; Kaiser, L. Universal transformers. arXiv 2018, arXiv:1807.03819. Available online: https://doi.org/10.48550/arXiv.1807.03819. (accessed 29 Sep 2025).

27. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA. June 27-30, 2016. IEEE; 2016. pp. 770-8.

28. Xie, H.; Qin, Z.; Li, G. Y. Task-oriented multi-user semantic communications for VQA. IEEE. Wirel. Commun. Lett. 2022, 11, 553-7.

29. Xie, H.; Qin, Z.; Tao, X.; Letaief, K. B. Task-oriented multi-user semantic communications. IEEE. J. Sel. Areas. Commun. 2022, 40, 2584-97.

30. Antol, S.; Agrawal, A.; Lu, J.; Mitchell, M.; Batra, D.; Zitnick, L. VQA: visual question answering. In 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile. December 07-13, 2015. IEEE; 2015. pp. 2425-33.

31. Devlin, J.; Chang, M. W.; Lee, K.; Toutanova, K. BERT: pre-training of deep bidirectional transformers for language understanding. arXiv 2019, arXiv:1810.04805. Available online: https://doi.org/10.48550/arXiv.1810.04805. (accessed 29 Sep 2025).

32. Zhou, T.; Zhao, Y.; Wu, J. ResNeXt and Res2Net structures for speaker verification. In 2021 IEEE Spoken Language Technology Workshop (SLT), Shenzhen, China. January 19-22, 2021. IEEE; 2021. pp. 301-7.

Intelligence & Robotics
ISSN 2770-3541 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/