REFERENCES
1. Zhao, J.; Zhao, W.; Deng, B.; et al. Autonomous driving system: a comprehensive survey. Expert. Syst. Appl. 2024, 242, 122836.
2. Tampuu, A.; Matiisen, T.; Semikin, M.; Fishman, D.; Muhammad, N. A survey of end-to-end driving: architectures and training methods. IEEE. Trans. Neural. Netw. Learn. Syst. 2022, 33, 1364-84.
3. Zhang, R.; Sun, C.; Valiollahimehrizi, R.; Czarnecki, K.; Khajepour, A. An uncertainty-aware, dual-tiered decision-making method for safe autonomous driving. IEEE. Trans. Intell. Transport. Syst. 2025, 26, 691-702.
4. Zhao, J.; Knoop, V. L.; Wang, M. Microscopic traffic modeling inside intersections: interactions between drivers. Transp. Sci. 2022, 57, 135-55.
5. Spatharis, C.; Blekas, K. Multiagent reinforcement learning for autonomous driving in traffic zones with unsignalized intersections. J. Intell. Transp. Syst. 2024, 28, 103-19.
6. Reda, M.; Onsy, A.; Haikal, A. Y.; Ghanbari, A. Path planning algorithms in the autonomous driving system: a comprehensive review. Robot. Auton. Syst. 2024, 174, 104630.
7. Li, S.; Peng, K.; Hui, F.; Li, Z.; Wei, C.; Wang, W. A decision-making approach for complex unsignalized intersections by deep reinforcement learning. IEEE. Trans. Veh. Technol. 2024, 73, 16134-47.
8. Al-Sharman, M.; Dempster, R.; Daoud, M. A.; Nasr, M.; Rayside, D.; Melek, W. Self-learned autonomous driving at unsignalized intersections: a hierarchical reinforced learning approach for feasible decision-making. IEEE. Trans. Intell. Transp. Syst. 2023, 24, 12345-56.
9. Xu, Y.; Bao, R.; Zhang, L.; Wang, J.; Wang, S. Embodied intelligence in RO/RO logistic terminal: autonomous intelligent transportation robot architecture. Sci. China. Inform. Sci. 2025, 68, 150210.
10. Li, X.; Liu, K.; Tseng, H. E.; Girard, A.; Kolmanovsky, I. Decision-making for autonomous vehicles with interaction-aware behavioral prediction and social-attention neural network. IEEE. Trans. Control. Syst. Technol. 2025, 33, 1285-300.
11. Guan, Y.; Ren, Y.; Sun, Q.; et al. Integrated decision and control: toward interpretable and computationally efficient driving intelligence. IEEE. Trans. Cybern. 2023, 53, 859-73.
12. Peng, Z.; Wang, Y.; Zheng, L.; Ma, J. Bilevel multi-armed bandit-based hierarchical reinforcement learning for interaction-aware self-driving at unsignalized intersections. IEEE. Trans. Veh. Technol. 2025, 74, 8824-38.
13. Pan, X.; Chen, B.; Timotheou, S.; Evangelou, S. A. A convex optimal control framework for autonomous vehicle intersection crossing. IEEE. Trans. Intell. Transport. Syst. 2023, 24, 163-77.
14. Yuan, M.; Shan, J.; Mi, K. Deep reinforcement learning based game-theoretic decision-making for autonomous vehicles. IEEE. Robot. Autom. Lett. 2022, 7, 818-25.
15. Li, N.; Yao, Y.; Kolmanovsky, I.; Atkins, E.; Girard, A. R. Game-theoretic modeling of multi-vehicle interactions at uncontrolled intersections. IEEE. Trans. Intell. Transport. Syst. 2022, 23, 1428-42.
16. Rizk, Y.; Awad, M.; Tunstel, E. W. Decision making in multiagent systems: a survey. IEEE. Trans. Cogn. Dev. Syst. 2018, 10, 514-29.
17. Mozaffari, S.; Al-Jarrah, O. Y.; Dianati, M.; Jennings, P.; Mouzakitis, A. Deep learning-based vehicle behavior prediction for autonomous driving applications: a review. IEEE. Trans. Intell. Transp. Syst. 2022, 23, 33-47.
18. Wu, Y.; Chen, H.; Zhu, F. DCL-AIM: decentralized coordination learning of autonomous intersection management for connected and automated vehicles. Transp. Res. Part. C. Emerg. Technol. 2019, 103, 246-60.
19. Qian, X.; Altché, F.; Grégoire, J.; de La Fortelle, A. Autonomous intersection management systems: criteria, implementation and evaluation. IET. Intell. Transp. Syst. 2017, 11, 182-89.
20. Liu, J.; Hang, P.; Na, X.; Huang, C.; Sun, J. Cooperative decision-making for CAVs at unsignalized intersections: a MARL approach with attention and hierarchical game priors. IEEE. Trans. Intell. Transp. Syst. 2025, 26, 443-56.
21. Noh, S. Decision-making framework for autonomous driving at road intersections: safeguarding against collision, overly conservative behavior, and violation vehicles. IEEE. Trans. Ind. Electron. 2019, 66, 3275-86.
22. Ebert, J. T.; Gauci, M.; Mallmann-Trenn, F.; Nagpal, R. Bayes bots: collective Bayesian decision-making in decentralized robot swarms. In 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, May 31–Aug 31, 2020. IEEE, 2020. pp 7186–92.
23. EL Bourakadi, D.; Yahyaouy, A.; Boumhidi, J. Multi-agent system based sequential energy management strategy for micro-grid using optimal weighted regularized extreme learning machine and decision tree. Intell. Decis. Technol. 2019, 13, 479–94. https://www.researchgate.net/publication/339188003_Multi-agent_system_based_sequential_energy_management_strategy_for_Micro-Grid_using_optimal_weighted_regularized_extreme_learning_machine_and_decision_tree. (accessed 21 Aug 2025).
24. Gronauer, S.; Dieopold, K. Multi-agent deep reinforcement learning: a survey. Artif. Intell. Rev. 2022, 55, 895-943.
25. Tang, C.; Abbatematteo, B.; Hu, J.; Chandra, R.; Martín-Martín, R.; Stone, P. Deep reinforcement learning for robotics: a survey of real-world successes. Annu. Rev. Control. Robot. Auton. Syst. 2025, 8, 153-88.
26. Wang, S.; Wang, Z.; Jiang, R.; Zhu, F.; Yan, R.; Shang, Y. A multi-agent reinforcement learning-based longitudinal and lateral control of CAVs to improve traffic efficiency in a mandatory lane change scenario. Transp. Res. Part. C. Emerg. Technol. 2024, 158, 104445.
27. Zhang, J.; Chang, C.; Zeng, X.; Li, L. Multi-agent DRL-based lane change with right-of-way collaboration awareness. IEEE. Trans. Intell. Transp. Syst. 2023, 24, 854-69.
28. Wang, T.; Ma, M.; Liang, S.; Yang, J.; Wang, Y. Robust lane change decision for autonomous vehicles in mixed traffic: a safety-aware multi-agent adversarial reinforcement learning approach. Transp. Res. Part. C. Emerg. Technol. 2025, 172, 105005.
29. Hu, X.; Liu, Y.; Tang, B.; Yan, J.; Chen, L. Learning dynamic graph for overtaking strategy in autonomous driving. IEEE. Trans. Intell. Transp. Syst. 2023, 24, 11921-33.
30. Chen, S.; Wang, M.; Song, W.; Yang, Y.; Fu, M. Multi-agent reinforcement learning-based decision making for twin-vehicles cooperative driving in stochastic dynamic highway environments. IEEE. Trans. Veh. Technol. 2023, 72, 12615-27.
31. Chen, D.; Hajidavalloo, M. R.; Li, Z.; et al. Deep multi-agent reinforcement learning for highway on-ramp merging in mixed traffic. IEEE. Trans. Intell. Transp. Syst. 2023, 24, 11623-11638.
32. Guo, Z.; Wu, Y.; Wang, L.; Zhang, J. Heuristic-based multi-agent deep reinforcement learning approach for coordinating connected and automated vehicles at non-signalized intersection. IEEE. Trans. Intell. Transp. Syst. 2024, 25, 16235-48.
33. Zhao, R.; Wang, K.; Li, Y.; Fan, Y.; Gao, F.; Gao, Z. Centralized cooperative control for autonomous vehicles at unsignalized all-directional intersections: a multi-agent projection-based constrained policy optimization approach. Expert. Syst. Appl. 2025, 267, 126153.
34. Li, G.; Yan, J.; Qiu, Y.; et al. Lightweight strategies for decision-making of autonomous vehicles in lane change scenarios based on deep reinforcement learning. IEEE. Trans. Intell. Transport. Syst. 2025, 26, 7245-61.
36. Kok, J. R.; Vlassis, N. Collaborative multiagent reinforcement learning by payoff propagation. J. Mach. Learn. Res. 2006, 7, 1789–828. https://jmlr.org/papers/v7/kok06a.html. (accessed 21 Aug 2025).
37. Guestrin, C.; Lagoudakis, M.; Parr, R. Coordinated reinforcement learning. In Proceedings of the Nineteenth International Conference on Machine Learning, San Francisco, USA. 2002. pp. 227–34. https://cdn.aaai.org/Symposia/Spring/2002/SS-02-02/SS02-02-014.pdf. (accessed 21 Aug 2025).
38. Böhmer, W.; Kurin. V.; Whiteson. S. Deep coordination graphs. arXiv 2019, arXiv: 1910.00091. https://doi.org/10.48550/arXiv.1910.00091. (accessed 21 Aug 2025).
39. Liu, J.; Huang, Z.; Xu, X.; Zhang, X.; Sun, S.; Li, D. Multi-kernel online reinforcement learning for path tracking control of intelligent vehicles. IEEE. Trans. Syst. Man. Cybern. Syst. 2021, 51, 6962-75.
40. Troullinos, D.; Chalkiadakis, G.; Papamichail, I.; Papageorgiou, M. Collaborative multiagent decision making for lane-free autonomous driving. In AAMAS '21: Proceedings of the 20th International Conference on Autonomous Agents and MultiAgent Systems, Richland, USA. 2021. pp. 1335–43. https://dl.acm.org/doi/10.5555/3463952.3464106. (accessed 21 Aug 2025).