REFERENCES

1. Liu, S.; Wang, X.; Wu, Y.; Li, Q.; Yan, J.; Levin, E. Path planning method for USVs based on improved DWA and COLREGs. Intell. Robot. 2024, 4, 385-405.

2. Jin, Z.; Liu, A.; Zhang, W. A.; Yu, L.; Yang, C. Learning an autonomous dynamic system to transfer periodic human motion skills. IEEE. Tran. Neural. Netw. Learn. Syst. 2025, 36, 7757-63.

3. Qin, D.; Jin, Z.; Liu, A.; Zhang, W. A.; Yu, L. Asynchronous event-triggered distributed predictive control for multi-agent systems with parameterized synchronization constraints. IEEE. Trans. Autom. Control. 2024, 69, 403-9.

4. Jin, Z.; Si, W.; Liu, A.; Zhang, W. A.; Yu, L.; Yang, C. Learning a flexible neural energy function with a unique minimum for globally stable and accurate demonstration learning. IEEE. Tran. Robot. 2023, 39, 4520-38.

5. Hassan, M. U.; Ullah, M.; Iqbal, J. Towards autonomy in agriculture: design and prototyping of a robotic vehicle with seed selector. In 2016 2nd International Conference on Robotics and Artificial Intelligence (ICRAI), Rawalpindi, Pakistan. Nov 01-02, 2016. IEEE; 2016. pp. 37-44.

6. Balding, S.; Gning, A.; Cheng, Y.; Iqbal, J. Information rich voxel grid for use in heterogeneous multi-agent robotics. Appl. Sci. 2023, 13, 5065.

7. Saleem, O.; Hamza, A.; Iqbal, J. A fuzzy-immune-regulated single-neuron proportionalɃintegralɃderivative control system for robust trajectory tracking in a lawn-mowing robot. Computers 2024, 13, 301.

8. Huang, H.; Li, Y.; Bai, Q. An improved A star algorithm for wheeled robots path planning with jump points search and pruning method. Complex. Eng. Syst. 2022, 2, 11.

9. Tawhid, M. A.; Ibrahim, A. M. An efficient hybrid swarm intelligence optimization algorithm for solving nonlinear systems and clustering problems. Soft. Comput. 2023, 27, 8867-95.

10. Zohaib, M.; Pasha, S. M.; Javaid, N.; Iqbal, J. IBA: intelligent bug algorithm – A novel strategy to navigate mobile robots autonomously. In: Shaikh, F.; Chowdhry, B.; Zeadally, S.; Hussain, D.; Memon, A.; Uqaili, M. editors. Communication technologies, information security and sustainable development. IMTIC. 2013. Communications in Computer and Information Science. Springer, Cham; 2014. pp. 291-9.

11. LaValle, S. M.; Kuffner, J. J. Randomized kinodynamic planning. In Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No. 99CH36288C), Detroit, USA. May 10-15, 1999. IEEE; 1999. pp. 473-9.

12. Hua, M.; Zhou, W.; Cheng, H.; Chen, Z. Improved DDPG algorithm-based path planning for unmanned surface vehicles. Intell. Robot. 2024, 4, 363-84.

13. Ha, I. K. Improved A-star search algorithm for probabilistic air pollution detection using UAVs. Sensors 2024, 24, 1141.

14. Guruji, A. K.; Agarwal, H.; Parsediya, D. K. Time-efficient A* algorithm for robot path planning. Proc. Technol. 2016, 23, 144-9.

15. Zhang, R.; Guo, H.; Andriukaitis, D.; Li, Y.; Królczyk, G.; Li, Z. Intelligent path planning by an improved RRT algorithm with dual grid map. Alex. Eng. J. 2024, 88, 91-104.

16. Xia, Z.; Chen, G.; Xiong, J.; Zhao, Q.; Chen, K. A random sampling-based approach to goal-directed footstep planning for humanoid robots. In 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Singapore. Jul 14-17, 2009. IEEE; 2009. pp. 168-73.

17. Urmson, C.; Simmons, R. Approaches for heuristically biasing RRT growth. In Proceedings 2003 IEEE International Conference on Intelligent Robots and Systems, Las Vegas, USA. Oct 27-31, 2003. IEEE; 2003. pp. 1178-83.

18. Li, D.; Li, Q.; Cheng, N.; Song, J. Extended RRT-based path planning for flying robots in complex 3D environments with narrow passages. In 2012 IEEE International Conference on Automation Science and Engineering (CASE), Seoul, Korea. Aug 20-24, 2012. IEEE; 2012. pp. 1173-8.

19. Palmieri, L.; Koenig, S.; Arras, K. O. RRT-based nonholonomic motion planning using any-angle path biasing. In 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden. May 16-21, 2016. IEEE; 2016. pp. 2775-81.

20. Ma, G.; Duan, Y.; Li, M.; Xie, Z.; Zhu, J. A probability smoothing Bi-RRT path planning algorithm for indoor robot. Future. Gener. Comput. Syst. 2023, 143, 349-60.

21. Fan, H.; Huang, J.; Huang, X.; Zhu, H.; Su, H. BI-RRT*: an improved path planning algorithm for secure and trustworthy mobile robots systems. Heliyon 2024, 10, e26403.

22. Wang, J.; Li, X.; Meng, M. Q. H. An improved RRT algorithm incorporating obstacle boundary information. In 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), Qingdao, China. Dec 03-07, 2016. IEEE; 2016. pp. 625-30.

23. Kohút, M.; Čornák, M.; Dobiš, M.; Babinec, A. Teaching robotics with the usage of robot operating system ROS. In: Balogh, R.; Obdržálek, D.; Christoforou, E. editors. Robotics in Education. RiE 2023. Lecture Notes in Networks and Systems. Springer, Cham; 2023. pp. 299-313.

Intelligence & Robotics
ISSN 2770-3541 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/