1. Gao M, Wang P, Jiang L, et al. Power generation for wearable systems. Energy Environ Sci 2021;14:2114-57.
2. Wang Q, Sun X, Liu C, et al. Current development of stretchable self-powered technology based on nanomaterials toward wearable biosensors in biomedical applications. Front Bioeng Biotechnol 2023;11:1164805.
3. Jia Y, Jiang Q, Sun H, et al. Wearable thermoelectric materials and devices for self-powered electronic systems. Adv Mater 2021;33:e2102990.
4. Hong M, Wang Y, Liu W, et al. Arrays of planar vacancies in superior thermoelectric Ge1-x-yCdxBiyTe with band convergence. Adv Energy Mater 2018;8:1801837.
5. Hong M, Wang Y, Feng T, et al. Strong phonon-phonon interactions securing extraordinary thermoelectric Ge1-xSbxTe with Zn-alloying-induced band alignment. J Am Chem Soc 2019;141:1742-8.
6. An CJ, Kang YH, Song H, Jeong Y, Cho SY. Highly integrated and flexible thermoelectric module fabricated by brush-cast doping of a highly aligned carbon nanotube web. ACS Appl Energy Mater 2019;2:1093-101.
7. Vieira EM, Figueira J, Pires AL, et al. Enhanced thermoelectric properties of Sb2Te3 and Bi2Te3 films for flexible thermal sensors. J Alloys Compd 2019;774:1102-16.
8. Sun T, Peavey JL, David Shelby M, Ferguson S, O’connor BT. Heat shrink formation of a corrugated thin film thermoelectric generator. Energy Convers Mana 2015;103:674-80.
9. Owoyele O, Ferguson S, O’connor BT. Performance analysis of a thermoelectric cooler with a corrugated architecture. Appl Energy 2015;147:184-91.
10. Song H, Meng Q, Lu Y, Cai K. Progress on PEDOT:PSS/Nanocrystal thermoelectric composites. Adv Electron Mater 2019;5:1800822.
11. Wang Y, Yang L, Shi XL, et al. Flexible thermoelectric materials and generators: challenges and innovations. Adv Mater 2019;31:e1807916.
12. Du Y, Xu J, Paul B, Eklund P. Flexible thermoelectric materials and devices. Appl Mater Today 2018;12:366-88.
13. Zhang L, Shi X, Yang Y, Chen Z. Flexible thermoelectric materials and devices: from materials to applications. Mater Today 2021;46:62-108.
14. Yang Q, Yang S, Qiu P, et al. Flexible thermoelectrics based on ductile semiconductors. Science 2022;377:854-8.
15. Shi X, Chen H, Hao F, et al. Room-temperature ductile inorganic semiconductor. Nat Mater 2018;17:421-6.
16. Hou C, Zhu M. Semiconductors flex thermoelectric power. Science 2022;377:815-6.
17. Fan Z, Du D, Guan X, Ouyang J. Polymer films with ultrahigh thermoelectric properties arising from significant seebeck coefficient enhancement by ion accumulation on surface. Nano Energy 2018;51:481-8.
18. Wang L, Zhang Z, Liu Y, et al. Exceptional thermoelectric properties of flexible organic-inorganic hybrids with monodispersed and periodic nanophase. Nat Commun 2018;9:3817.
19. Kim D, Park Y, Ju D, Lee G, Kwon W, Cho K. Energy-filtered acceleration of charge-carrier transport in organic thermoelectric nanocomposites. Chem Mater 2021;33:4853-62.
20. Bubnova O, Khan ZU, Malti A, et al. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nat Mater 2011;10:429-33.
21. Jin Q, Jiang S, Zhao Y, et al. Flexible layer-structured Bi2Te3 thermoelectric on a carbon nanotube scaffold. Nat Mater 2019;18:62-8.
22. Kim H, Anasori B, Gogotsi Y, Alshareef HN. Thermoelectric properties of two-dimensional molybdenum-based MXenes. Chem Mater 2017;29:6472-9.
23. Mengistie DA, Chen CH, Boopathi KM, Pranoto FW, Li LJ, Chu CW. Enhanced thermoelectric performance of PEDOT:PSS flexible bulky papers by treatment with secondary dopants. ACS Appl Mater Interfaces 2015;7:94-100.
24. Xiang J, Drzal LT. Templated growth of polyaniline on exfoliated graphene nanoplatelets (GNP) and its thermoelectric properties. Polymer 2012;53:4202-10.
25. Chelawat H, Vaddiraju S, Gleason K. Conformal, conducting poly(3,4-ethylenedioxythiophene) thin films deposited using bromine as the oxidant in a completely dry oxidative chemical vapor deposition process. Chem Mater 2010;22:2864-8.
26. Lee S, Gleason KK. Enhanced optical property with tunable band gap of cross-linked PEDOT copolymers via oxidative chemical vapor deposition. Adv Funct Mater 2015;25:85-93.
27. Hsin C, Huang C, Wu M, Cheng S, Pan R. Synthesis and thermoelectric properties of indium telluride nanowires. Mater Res Bull 2019;112:61-5.
28. Pang J, Zhang X, Shen L, Xu J, Nie Y, Xiang G. Synthesis and thermoelectric properties of Bi-doped SnSe thin films*. Chin Phys B 2021;30:116302.
29. Varghese T, Dun C, Kempf N, et al. Flexible thermoelectric devices of ultrahigh power factor by scalable printing and interface engineering. Adv Funct Mater 2020;30:1905796.
30. Zeng M, Zavanelli D, Chen J, et al. Printing thermoelectric inks toward next-generation energy and thermal devices. Chem Soc Rev 2022;51:485-512.
31. Kim F, Kwon B, Eom Y, et al. 3D printing of shape-conformable thermoelectric materials using all-inorganic Bi2Te3-based inks. Nat Energy 2018;3:301-9.
32. Hong CT, Lee W, Kang YH, et al. Effective doping by spin-coating and enhanced thermoelectric power factors in SWCNT/P3HT hybrid films. J Mater Chem A 2015;3:12314-9.
33. Choi DY, Kang HW, Sung HJ, Kim SS. Annealing-free, flexible silver nanowire-polymer composite electrodes via a continuous two-step spray-coating method. Nanoscale 2013;5:977-83.
34. Zhao X, Mai Y, Luo H, et al. Nano-MoS2/poly (3,4-ethylenedioxythiophene): poly(styrenesulfonate) composite prepared by a facial dip-coating process for Li-ion battery anode. Appl Surf Sci 2014;288:736-41.
35. Lee SH, Park H, Son W, Choi HH, Kim JH. Novel solution-processable, dedoped semiconductors for application in thermoelectric devices. J Mater Chem A 2014;2:13380-7.
36. Xiong J, Jiang F, Zhou W, Liu C, Xu J. Highly electrical and thermoelectric properties of a PEDOT:PSS thin-film via direct dilution-filtration. RSC Adv 2015;5:60708-12.
37. Song H, Yao Y, Tang C, et al. Tunable thermoelectric properties of free-standing PEDOT nanofiber film through adjusting its nanostructure. Synth Met 2021;275:116742.
38. Ni D, Song H, Chen Y, Cai K. Free-standing highly conducting PEDOT films for flexible thermoelectric generator. Energy 2019;170:53-61.
39. Xu S, Shi X, Dargusch M, Di C, Zou J, Chen Z. Conducting polymer-based flexible thermoelectric materials and devices: from mechanisms to applications. Prog Mater Sci 2021;121:100840.
40. Li M, Bai Z, Chen X, et al. Thermoelectric transport in conductive poly(3,4-ethylenedioxythiophene). Chin Phys B 2022;31:027201.
41. Song H, Cai K. Preparation and properties of PEDOT:PSS/Te nanorod composite films for flexible thermoelectric power generator. Energy 2017;125:519-25.
42. Meng Q, Song H, Du Y, Ding Y, Cai K. Facile preparation of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate)/Ag2Te nanorod composite films for flexible thermoelectric generator. J Materiomics 2021;7:302-9.
43. Lu Y, Ding Y, Qiu Y, et al. Good performance and flexible PEDOT:PSS/Cu2Se nanowire thermoelectric composite films. ACS Appl Mater Interfaces 2019;11:12819-29.
44. Lu Y, Li X, Cai K, et al. Enhanced-performance PEDOT:PSS/Cu2Se-based composite films for wearable thermoelectric power generators. ACS Appl Mater Interfaces 2021;13:631-8.
45. Du Y, Liu X, Xu J, Shen SZ. Flexible Bi-Te-based alloy nanosheet/PEDOT:PSS thermoelectric power generators. Mater Chem Front 2019;3:1328-34.
46. Liu D, Yan Z, Zhao Y, et al. Facile self-supporting and flexible Cu2S/PEDOT:PSS composite thermoelectric film with high thermoelectric properties for body energy harvesting. Results Phys 2021;31:105061.
47. Yan Z, Zhao Y, Liu D, et al. Thermoelectric properties of flexible PEDOT:PSS-based films tuned by SnSe via the vacuum filtration method. RSC Adv 2020;10:43840-6.
48. Jiang F, Xiong J, Zhou W, et al. Use of organic solvent-assisted exfoliated MoS2 for optimizing the thermoelectric performance of flexible PEDOT:PSS thin films. J Mater Chem A 2016;4:5265-73.
49. Wang X, Meng F, Wang T, et al. High performance of PEDOT:PSS/SiC-NWs hybrid thermoelectric thin film for energy harvesting. J Alloys Compd 2018;734:121-9.
50. Liu E, Liu C, Zhu Z, et al. Preparation of poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate)/silicon dioxide nanoparticles composite films with large thermoelectric power factor. J Compos Mater 2018;52:621-7.
51. Tian Z, Liu H, Wang N, Liu Y, Zhang X. Facile preparation and thermoelectric properties of PEDOT nanowires/Bi2Te3 nanocomposites. J Mater Sci Mater Electron 2018;29:17367-73.
52. Liu H, Liu P, Zhang M, et al. Properties of PEDOT nanowire/Te nanowire nanocomposites and fabrication of a flexible thermoelectric generator. RSC Adv 2020;10:33965-71.
53. Xiong J, Wang L, Xu J, et al. Thermoelectric performance of PEDOT:PSS/Bi2Te3-nanowires: a comparison of hybrid types. J Mater Sci Mater Electron 2016;27:1769-76.
54. Wu Q, Zha K, Zhang J, Zhang J, Hai J, Lu Z. SnS/PEDOT:PSS composite films with enhanced surface conductivities induced by solution post-treatment and their application in flexible thermoelectric. Org Electron 2023;118:106799.
55. Li H, Liang Y, Liu S, Qiao F, Li P, He C. Modulating carrier transport for the enhanced thermoelectric performance of carbon nanotubes/polyaniline composites. Org Electron 2019;69:62-8.
56. Wang L, Yao Q, Bi H, Huang F, Wang Q, Chen L. PANI/graphene nanocomposite films with high thermoelectric properties by enhanced molecular ordering. J Mater Chem A 2015;3:7086-92.
57. Hsieh YY, Zhang Y, Zhang L, et al. High thermoelectric power-factor composites based on flexible three-dimensional graphene and polyaniline. Nanoscale 2019;11:6552-60.
58. Xiong J, Jiang F, Shi H, et al. Liquid exfoliated graphene as dopant for improving the thermoelectric power factor of conductive PEDOT:PSS nanofilm with hydrazine treatment. ACS Appl Mater Interfaces 2015;7:14917-25.
59. Jiang Q, Lan X, Liu C, et al. High-performance hybrid organic thermoelectric SWNTs/PEDOT:PSS thin-films for energy harvesting. Mater Chem Front 2018;2:679-85.
60. Zhang Z, Chen G, Wang H, Li X. Template-directed in situ polymerization preparation of nanocomposites of PEDOT:PSS-coated multi-walled carbon nanotubes with enhanced thermoelectric property. Chem Asian J 2015;10:149-53.
61. Song H, Liu C, Xu J, Jiang Q, Shi H. Fabrication of a layered nanostructure PEDOT:PSS/SWCNTs composite and its thermoelectric performance. RSC Adv 2013;3:22065-71.
62. Liu X, Du Y, Meng Q, Shen SZ, Xu J. Flexible thermoelectric power generators fabricated using graphene/PEDOT:PSS nanocomposite films. J Mater Sci Mater Electron 2019;30:20369-75.
63. Du Y, Shi Y, Meng Q, Shen SZ. Preparation and thermoelectric properties of flexible SWCNT/PEDOT:PSS composite film. Synth Met 2020;261:116318.
64. Deng W, Deng L, Li Z, Zhang Y, Chen G. Synergistically boosting thermoelectric performance of PEDOT:PSS/SWCNT composites via the ion-exchange effect and promoting SWCNT dispersion by the ionic liquid. ACS Appl Mater Interfaces 2021;13:12131-40.
65. Huang J, Liu X, Du Y. Fabrication of free-standing flexible and highly efficient carbon nanotube film/PEDOT: PSS thermoelectric composites. J Materiomics 2022;8:1213-7.
66. Wang P, Liao Y, Lai Y, et al. Conversion of pristine and p-doped sulfuric-acid-treated single-walled carbon nanotubes to n-type materials by a facile hydrazine vapor exposure process. Mater Chem Phys 2012;134:325-32.
67. Wang H, Hsu JH, Yi SI, et al. Thermally driven large N-type voltage responses from hybrids of carbon nanotubes and poly(3,4-ethylenedioxythiophene) with tetrakis(dimethylamino)ethylene. Adv Mater 2015;27:6855-61.
68. Song H, Qiu Y, Wang Y, et al. Polymer/carbon nanotube composite materials for flexible thermoelectric power generator. Compos Sci Technol 2017;153:71-83.
69. Liang L, Gao C, Chen G, Guo C. Large-area, stretchable, super flexible and mechanically stable thermoelectric films of polymer/carbon nanotube composites. J Mater Chem C 2016;4:526-32.
70. Liang L, Chen G, Guo C. Enhanced thermoelectric performance by self-assembled layered morphology of polypyrrole nanowire/single-walled carbon nanotube composites. Compos Sci Technol 2016;129:130-6.
71. Liang L, Wang X, Wang M, Liu Z, Chen G, Sun G. Flexible poly(3,4-ethylenedioxythiophene)-tosylate/SWCNT composite films with ultrahigh electrical conductivity for thermoelectric energy harvesting. Compos Commun 2021;25:100701.
72. Zhang L, Harima Y, Imae I. Highly improved thermoelectric performances of PEDOT:PSS/SWCNT composites by solvent treatment. Org Electron 2017;51:304-7.
73. Bark H, Lee W, Lee H. Enhanced thermoelectric performance of CNT thin film p/n junctions doped with N-containing organic molecules. Macromol Res 2015;23:795-801.
74. Kim J, Kwon OH, Kang YH, Jang K, Cho SY, Yoo Y. A facile preparation route of n-type carbon buckypaper and its enhanced thermoelectric performance. Compos Sci Technol 2017;153:32-9.
75. Chortos A, Pochorovski I, Lin P, et al. Universal selective dispersion of semiconducting carbon nanotubes from commercial sources using a supramolecular polymer. ACS Nano 2017;11:5660-9.
76. Shimizu S, Iizuka T, Kanahashi K, et al. Thermoelectric detection of multi-subband density of states in semiconducting and metallic single-walled carbon nanotubes. Small 2016;12:3388-92.
77. Avery AD, Zhou BH, Lee J, et al. Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties. Nat Energy 2016;1:16033.
78. Wang L, Yao Q, Qu S, Shi W, Chen L. Influence of electronic type of SWNTs on the thermoelectric properties of SWNTs/PANI composite films. Org Electron 2016;39:146-52.
79. Tambasov IA, Voronin AS, Evsevskaya NP, et al. Thermoelectric properties of low-cost transparent single wall carbon nanotube thin films obtained by vacuum filtration. Physica E Low Dimens Syst Nanostruct 2019;114:113619.
80. Wu D, Huang C. High cross-plane thermoelectric performance of carbon nanotube sponge films. Int J Energy Res 2020;44:2332-6.
81. Gao W, Komatsu N, Taylor LW, et al. Macroscopically aligned carbon nanotubes for flexible and high-temperature electronics, optoelectronics, and thermoelectrics. J Phys D Appl Phys 2020;53:063001.
82. Matsumoto M, Yamaguchi R, Shima K, et al. Control of anisotropic conduction of carbon nanotube sheets and their use as planar-type thermoelectric conversion materials. Sci Technol Adv Mater 2021;22:272-9.
83. Gee C, Tseng C, Wu F, et al. Few layer graphene paper from electrochemical process for heat conduction. Mater Res Innov 2014;18:208-13.
84. Zhao W, Tan HT, Tan LP, et al. n-Type carbon nanotubes/silver telluride nanohybrid buckypaper with a high-thermoelectric figure of merit. ACS Appl Mater Interfaces 2014;6:4940-6.
85. Bark H, Kim J, Kim H, Yim J, Lee H. Effect of multiwalled carbon nanotubes on the thermoelectric properties of a bismuth telluride matrix. Curr Appl Phys 2013;13:S111-4.
86. Chen X, Feng L, Yu P, et al. Flexible thermoelectric films based on Bi2Te3 nanosheets and carbon nanotube network with high n-type performance. ACS Appl Mater Interfaces 2021;13:5451-9.
87. Fan J, Huang X, Liu F, Deng L, Chen G. Feasibility of using chemically exfoliated SnSe nanobelts in constructing flexible SWCNTs-based composite films for high-performance thermoelectric applications. Compos Commun 2021;24:100612.
88. Gao J, Liu C, Miao L, Wang X, Peng Y, Chen Y. Enhanced power factor in flexible reduced graphene oxide/nanowires hybrid films for thermoelectrics. RSC Adv 2016;6:31580-7.
89. Xiao Z, Du Y, Meng Q, Wang L. Thermoelectric characteristics of flexible reduced graphene oxide/silver selenide nanowire composites prepared by a facile vacuum filtration process. Chinese Phys B 2022;31:028103.
90. Chen Z, Cui Y, Liang L, et al. Flexible film and thermoelectric device of single-walled carbon nanotube@conductive metal-organic framework composite. Mater Today Nano 2022;20:100276.
91. Yang S, Qiu P, Chen L, Shi X. Recent Developments in Flexible Thermoelectric Devices. Small Sci 2021;1:2100005.
92. Ding Y, Qiu Y, Cai K, et al. High performance n-type Ag2Se film on nylon membrane for flexible thermoelectric power generator. Nat Commun 2019;10:841.
93. Drymiotis F, Day TW, Brown DR, Heinz NA, Jeffrey Snyder G. Enhanced thermoelectric performance in the very low thermal conductivity Ag2Se0.5Te0.5. Appl Phys Lett 2013;103:143906.
94. Lu Y, Liu Y, Li Y, Cai K. The influence of Ga doping on preparation and thermoelectric properties of flexible Ag2Se films. Compos Commun 2021;27:100895.
95. Wu M, Cai K, Li X, et al. Ultraflexible and high-thermoelectric-performance sulfur-doped Ag2Se film on nylon for power generators. ACS Appl Mater Interfaces 2022;14:4307-15.
96. Jiang C, Ding Y, Cai K, et al. Ultrahigh performance of n-type Ag2Se films for flexible thermoelectric power generators. ACS Appl Mater Interfaces 2020;12:9646-55.
97. Jiang C, Wei P, Ding Y, et al. Ultrahigh performance polyvinylpyrrolidone/Ag2Se composite thermoelectric film for flexible energy harvesting. Nano Energy 2021;80:105488.
98. Liu Y, Lu Y, Wang Z, et al. High performance Ag2Se films by a one-pot method for a flexible thermoelectric generator. J Mater Chem A 2022;10:25644-51.
99. Gao Q, Wang W, Lu Y, et al. High Power Factor Ag/Ag2Se composite films for flexible thermoelectric generators. ACS Appl Mater Interfaces 2021;13:14327-33.
100. Li X, Lu Y, Cai K, et al. Exceptional power factor of flexible Ag/Ag2Se thermoelectric composite films. J Chem Eng 2022;434:134739.
101. Wu W, Liang Z, Jia M, et al. High power factor of Ag2Se/Ag/Nylon composite films for wearable thermoelectric devices. Nanomaterials 2022;12:4238.
102. Palaporn D, Mongkolthanaruk W, Tanusilp S, Kurosaki K, Pinitsoontorn S. A simple method for fabricating flexible thermoelectric nanocomposites based on bacterial cellulose nanofiber and Ag2Se. Appl Phys Lett 2022;120:073901.
103. Zhou H, Zhang Z, Sun C, Deng H, Fu Q. Biomimetic approach to facilitate the high filler content in free-standing and flexible thermoelectric polymer composite films based on PVDF and Ag2Se nanowires. ACS Appl Mater Interfaces 2020;12:51506-16.
104. Zhang Y, Zhao Y, Guo R, Zhang Z, Liu D, Xue C. Effect of L-ascorbic acid solution concentration on the thermoelectric properties of silver selenide flexible films prepared by vacuum-assisted filtration. Nanomaterials 2022;12:624.
105. Zhou C, Dun C, Wang Q, et al. Nanowires as building blocks to fabricate flexible thermoelectric fabric: the case of copper telluride nanowires. ACS Appl Mater Interfaces 2015;7:21015-20.
106. Pammi SVN, Jella V, Choi J, Yoon S. Enhanced thermoelectric properties of flexible Cu2-xSe (x ≥ 0.25) NW/polyvinylidene fluoride composite films fabricated via simple mechanical pressing†. J Mater Chem C 2017;5:763-9.
107. Han X, Lu Y, Liu Y, et al. CuI/Nylon membrane hybrid film with large seebeck effect. Chin Phys Lett 2021;38:126701.
108. Zeng X, Ren L, Xie J, et al. Room-temperature welding of silver telluride nanowires for high-performance thermoelectric film. ACS Appl Mater Interfaces 2019;11:37892-900.
109. Yu P, Feng L, Tang W, et al. Robust, flexible thermoelectric film for energy harvesting by a simple and eco-friendly method. ACS Appl Mater Interfaces 2023;15:13144-54.
110. Zhao X, Zhao C, Jiang Y, et al. Flexible cellulose nanofiber/Bi2Te3 composite film for wearable thermoelectric devices. J Power Sources 2020;479:229044.
111. Dong Z, Liu H, Yang X, et al. Facile fabrication of paper-based flexible thermoelectric generator. npj Flex Electron 2021;5:6.
112. Wu M, Li J, Liu Y, et al. High thermoelectric performance and ultrahigh flexibility Ag2S1-xSex film on a nylon membrane. ACS Appl Mater Interfaces 2023;15:8415-23.
113. Wang T, Liu C, Xu J, et al. Thermoelectric performance of restacked MoS2 nanosheets thin-film. Nanotechnology 2016;27:285703.
114. Piao M, Chu J, Wang X, et al. Hydrothermal synthesis of stable metallic 1T phase WS2 nanosheets for thermoelectric application. Nanotechnology 2018;29:025705.
115. Piao M, Li C, Joo M, et al. Hydrothermal synthesis of stable 1T-WS2 and single-walled carbon nanotube hybrid flexible thin films with enhanced thermoelectric performance. Energy Technol 2018;6:1921-8.
116. Ding W, Liu P, Bai Z, et al. Constructing layered MXene/CNTs composite film with 2D-3D sandwich structure for high thermoelectric performance. Adv Mater Interfaces 2020;7:2001340.
117. Diao J, Yuan J, Cai Z, et al. High-performance electromagnetic interference shielding and thermoelectric conversion derived from multifunctional Bi2Te2.7Se0.3/MXene composites. Carbon 2022;196:243-52.
118. Liu X, Du Y, Meng Q, et al. Free-standing single-walled carbon nanotube/SnSe nanosheet/poly(3,4ethylenedioxythiophene):poly(4-styrenesulfonate) nanocomposite films for flexible thermoelectric power generators. Adv Eng Mater 2020;22:2000605.
119. Meng Q, Cai K, Du Y, Chen L. Preparation and thermoelectric properties of SWCNT/PEDOT:PSS coated tellurium nanorod composite films. J Alloys Compd 2019;778:163-9.
120. Park D, Kim M, Kim J. Facile fabrication of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-coated selenium nanowire/carbon nanotube composite films for flexible thermoelectric applications. Dalton Trans 2021;50:12424-9.
121. Liu D, Yan Z, Zhao Y, et al. Facile MWCNTs-SnSe/PEDOT:PSS ternary composite flexible thermoelectric films optimized by cold-pressing. J Mater Res Technol 2021;15:4452-60.
122. Lu Y, Qiu Y, Cai K, et al. Ultrahigh power factor and flexible silver selenide-based composite film for thermoelectric devices. Energy Environ Sci 2020;13:1240-9.
123. Lu Y, Qiu Y, Cai K, et al. Ultrahigh performance PEDOT/Ag2Se/CuAgSe composite film for wearable thermoelectric power generators. Mater Today Phys 2020;14:100223.
124. Wang Z, Gao Q, Wang W, et al. High performance Ag2Se/Ag/PEDOT composite films for wearable thermoelectric power generators. Mater Today Phys 2021;21:100553.
125. Li Y, Lou Q, Yang J, et al. Exceptionally high power factor Ag2Se/Se/polypyrrole composite films for flexible thermoelectric generators. Adv Funct Mater 2022;32:2106902.
126. Park D, Kim M, Kim J. Fabrication of PEDOT:PSS/Ag2Se nanowires for polymer-based thermoelectric applications. Polymers 2020;12:2932.
127. Park D, Lee S, Kim J. Thermoelectric and mechanical properties of PEDOT:PSS-coated Ag2Se nanowire composite fabricated via digital light processing based 3D printing. Compos Commun 2022;30:101084.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.