1. Khenfer, R.; Lekbir, A.; Rouabah, Z.; et al. Experimental investigation of water-based photovoltaic/thermal-thermoelectric hybrid system: energy, exergy, economic and environmental assessment. J. Power. Sources. 2024, 598, 234151.
2. Lekbir, A.; Hassani, S.; Mekhilef, S. Techno-economic and life cycle assessment of a nanofluid-based concentrated Photovoltaic/Thermal-Thermoelectric hybrid system. J. Power. Sources. 2024, 595, 234066.
3. Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M. D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy. Strategy. Rev. 2019, 24, 38-50.
4. Mehta, P.; Gaur, A.; Kumar, C.; Nella, A.; Bhowmick, A.; Rajagopal, M. Energy harvesting techniques and trends in electronic applications. In: Nella A, Bhowmick A, Kumar C, Rajagopal M, editors. Energy harvesting trends for low power compact electronic devices. Cham: Springer International Publishing; 2023. pp. 205-20.
5. Muchuweni, E.; Mombeshora, E. T. Recent advances in thermoelectric performance by incorporating graphene-based materials for energy harvesting. Renew. Energy. Focus. 2023, 45, 40-52.
6. Xin, J.; Basit, A.; Li, S.; Danto, S.; Tjin, S. C.; Wei, L. Inorganic thermoelectric fibers: a review of materials, fabrication methods, and applications. Sensors 2021, 21, 3437.
7. Mamur, H.; Dilmaç, ÖF.; Begum, J.; Bhuiyan, M. R. A. Thermoelectric generators act as renewable energy sources. Cleaner. Mater. 2021, 2, 100030.
8. Olabi, A.; Al-Murisi, M.; Maghrabie, H. M.; et al. Potential applications of thermoelectric generators (TEGs) in various waste heat recovery systems. Int. J. Thermofluids. 2022, 16, 100249.
9. Manghwar, R.; Selvaraj, J.; Abd Rahim, N.; Kumar, L.; Khoharo, H. Global advancements of solar thermoelectric generators application, limitations, and prospects: a comprehensive review. Appl. Therm. Eng. 2024, 257, 124231.
10. Rjafallah, A.; Younis, A.; Cotfas, D. T.; Cotfas, P. A. Effects of temperature uniformity and nonuniformity on thermoelectric generator performance across hot and cold sides. Case. Stud. Therm. Eng. 2024, 59, 104596.
11. Lekbir, A.; Hassani, S.; Ab Ghani, M. R.; Gan, C. K.; Mekhilef, S.; Saidur, R. Improved energy conversion performance of a novel design of concentrated photovoltaic system combined with thermoelectric generator with advance cooling system. Energy. Convers. Manag. 2018, 177, 19-29.
12. Shi, X.; Cao, T.; Chen, W.; et al. Advances in flexible inorganic thermoelectrics. EcoEnergy 2023, 1, 296-343.
13. Zheng, Z.; Shi, X.; Ao, D.; et al. Harvesting waste heat with flexible Bi2Te3 thermoelectric thin film. Nat. Sustain. 2023, 6, 180-91.
14. Chen, Y. X.; Shi, X. L.; Zhang, J. Z.; et al. Deviceization of high-performance and flexible Ag2Se films for electronic skin and servo rotation angle control. Nat. Commun. 2024, 15, 8356.
15. Zhang, M.; Shi, X.; Liu, S.; et al. Compositing effect leads to extraordinary performance in GeSe-based thermoelectrics. Adv. Funct. Mater. 2025, 2500898.
16. Hu, B.; Shi, X. L.; Cao, T.; et al. Realizing high performance in flexible Mg3Sb2-xBix thin-film thermoelectrics. Adv. Sci. 2025, e2502683.
17. Chan, Z.; Lim, J. H. Life cycle analysis of thermoelectric generator efficiency for waste heat recovery. AIP. Conf. Proc. 2020, 2233, 020003.
18. Lan, Y.; Lu, J.; Wang, S. Study of the geometry and structure of a thermoelectric leg with variable material properties and side heat dissipation based on thermodynamic, economic, and environmental analysis. Energy 2023, 282, 128895.
19. Ibn-Mohammed, T.; Koh, S.; Mustapha, K.; et al. Techno-environmental analysis of material substitution in thermoelectric modules: non-oxide (bismuth telluride alloys) vs. oxide-based (lanthanum-doped strontium titanate and calcium cobaltite) materials. Energy. Convers. Manag. X. 2023, 19, 100395.
20. Soleimani, Z.; Zoras, S.; Ceranic, B.; Shahzad, S.; Cui, Y. The cradle to gate life-cycle assessment of thermoelectric materials: A comparison of inorganic, organic and hybrid types. Sustain. Energy. Technol. Assess. 2021, 44, 101073.
21. Dhawan, R.; Madusanka, P.; Hu, G.; et al. Si0.97Ge0.03 microelectronic thermoelectric generators with high power and voltage densities. Nat. Commun. 2020, 11, 4362.
22. Pavlovskaya, N. T.; Litovchenko, P. G.; Ugrin, Y. O.; Pavlovskyy, Y. V.; Ostrovskii, I. P.; Rogacki, K. Magnetoresistance of proton irradiated Si0.97Ge0.03 whiskers. Mod. Electron. Mater. 2016, 2, 85-8.
23. Parashchuk, T.; Kostyuk, O.; Nykyruy, L.; Dashevsky, Z. High thermoelectric performance of p-type Bi0.5Sb1.5Te3 films on flexible substrate. Mater. Chem. Phys. 2020, 253, 123427.
24. Lemine, A. S.; El-Makaty, F. M.; Al-Ghanim, H. A.; Youssef, K. M. Experimental and modeling analysis of p-type Bi0.4Sb1.6Te3 and graphene nanocomposites. J. Mater. Res. Technol. 2022, 16, 1702-12.
25. Amin, A.; Huang, R.; Newbrook, D.; et al. Screen-printed bismuth telluride nanostructured composites for flexible thermoelectric applications. J. Phys. Energy. 2022, 4, 024003.
26. Liang, J.; Shi, X.; Peng, Y.; et al. Synergistic effect of band and nanostructure engineering on the boosted thermoelectric performance of n-type Mg3+δ(Sb, Bi)2 Zintls. Adv. Energy. Mater. 2022, 12, 2201086.
27. Imasato, K.; Fu, C.; Pan, Y.; et al. Metallic n-type Mg3Sb2 single crystals demonstrate the absence of ionized impurity scattering and enhanced thermoelectric performance. Adv. Mater. 2020, 32, e1908218.
28. Varghese, T.; Dun, C.; Kempf, N.; et al. Flexible thermoelectric devices of ultrahigh power factor by scalable printing and interface engineering. Adv. Funct. Mater. 2020, 30, 1905796.
29. Pandit, A.; Haleoot, R.; Hamad, B. Structural, electronic and thermoelectric properties of Pb1-xSnxTe alloys. J. Electron. Mater. 2020, 49, 586-92.
30. Kungumadevi, L.; Sathyamoorthy, R. Structural, electrical, and optical properties of PbTe thin films prepared by simple flash evaporation method. Adv. Condens. Matter. Phys. 2012, 2012, 1-5.
31. Norimasa, O.; Chiba, T.; Hase, M.; Komori, T.; Takashiri, M. Improvement of thermoelectric properties of flexible Bi2Te3 thin films in bent states during sputtering deposition and post-thermal annealing. J. Alloys. Compd. 2022, 898, 162889.
32. Park, D.; Park, S.; Jeong, K.; Jeong, H. S.; Song, J. Y.; Cho, M. H. Thermal and electrical conduction of single-crystal Bi2Te3 nanostructures grown using a one step process. Sci. Rep. 2016, 6, 19132.
33. Sun, Z.; Cheng, K.; Lin, S.; et al. Stoichiometric effect of Sb2Te3 thin film on thermoelectric property. ACS. Appl. Energy. Mater. 2022, 5, 7026-33.
34. Endo, R.; Maeda, S.; Jinnai, Y.; et al. Electric resistivity measurements of Sb2Te3 and Ge2Sb2Te5 melts using four-terminal method. Jpn. J. Appl. Phys. 2010, 49, 065802.
35. Liu, Z.; Zhu, J.; Tong, X.; Niu, S.; Zhao, W. A review of CoSb3-based skutterudite thermoelectric materials. J. Adv. Ceram. 2020, 9, 647-73.
36. Bourgès, C.; Zhang, W.; Raut, K. K.; et al. Investigation of Mn single and Co-doping in thermoelectric CoSb3-skutterudite: a way toward a beneficial composite effect. ACS. Appl. Energy. Mater. 2023, 6, 9646-56.
37. Lin, J.; Ma, L.; Liu, Q.; et al. Continuous phase transition in thermoelectric Zn4Sb3. Mater. Today. Energy. 2021, 21, 100787.
38. Zou, T.; Qin, X.; Zhang, Y.; et al. Enhanced thermoelectric performance of β-Zn4Sb3 based nanocomposites through combined effects of density of states resonance and carrier energy filtering. Sci. Rep. 2015, 5, 17803.
39. Fatima, K.; Noor, H.; Ali, A.; Monakhov, E.; Asghar, M. Annealing effect on seebeck coefficient of SiGe thin films deposited on quartz substrate. Coatings 2021, 11, 1435.
40. Fan, Z.; Liang, J.; Chen, J.; et al. Realizing high thermoelectric performance for p-type SiGe in medium temperature region via TaC compositing. J. Materiomics. 2023, 9, 984-91.
41. Yamanaka, S.; Kosuga, A.; Kurosaki, K. Thermoelectric properties of Tl9BiTe6. J. Alloys. Compd. 2003, 352, 275-8.
42. Lekbir, A.; Meddad, M. A. E.; Benhadouga, S.; Khenfer, R. Higher-efficiency for combined photovoltaic-thermoelectric solar power generation. Int. J. Green. Energy. 2019, 16, 371-7.
43. Vovchenko, L.; Matzui, L.; Zhuravkov, A.; Samchuk, A. Electrical resistivity of compacted TEG and TEG-Fe under compression. J. Phys. Chem. Solids. 2006, 67, 1168-72.
44. Hammond, G. P.; Jones, C. I. Embodied energy and carbon in construction materials. Proc. Inst. Civ. Eng. Energy. 2008, 161, 87-98.
47. Schivley, G.; Ingwersen, W. W.; Marriott, J.; Hawkins, T. R.; Skone, T. J. Identifying/quantifying environmental trade-offs inherent in GHG reduction strategies for coal-fired power. Environ. Sci. Technol. 2015, 49, 7562-70.
48. Jeong, B.; Jeon, H.; Kim, S.; Kim, J.; Zhou, P. Evaluation of the lifecycle environmental benefits of full battery powered ships: comparative analysis of marine diesel and electricity. J. Mar. Sci. Eng. 2020, 8, 580.
49. Wang, X.; Ting, D. S.; Henshaw, P. Mutation particle swarm optimization (M-PSO) of a thermoelectric generator in a multi-variable space. Energy. Convers. Manag. 2020, 224, 113387.
50. Xu, G.; Cui, Q.; Shi, X.; et al. Particle swarm optimization based on dimensional learning strategy. Swarm. Evol. Comput. 2019, 45, 33-51.
54. Jaziri, N.; Boughamoura, A.; Müller, J.; Mezghani, B.; Tounsi, F.; Ismail, M. A comprehensive review of thermoelectric generators: technologies and common applications. Energy. Rep. 2020, 6, 264-87.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.