REFERENCES

1. Judy, J. W. Microelectromechanical systems (MEMS): fabrication, design and applications. Smart. Mater. Struct. 2001, 10, 1115.

2. Jayaram, K.; Shum, J.; Castellanos, S.; Helbling, E. F.; Wood, R. J. Scaling down an insect-size microrobot, HAMR-VI into HAMR-Jr. In 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France. May 31 - August 31, 2020. IEEE; 2020. pp. 10305–11.

3. Ando, T.; Fu, X. A. Materials: silicon and beyond. Sens. Actuators. A. Phys. 2019, 296, 340-51.

4. Cui, Z. Development of microfabrication technology for MEMS/MOEMS applications. In MEMS/MOEMS Technologies and Applications Ⅱ. vol. 5641. SPIE; 2004. pp. 179–87.

5. Gunn, R.; Stephens, D.; Welch, C. Comparison of etch processes for patterning high aspect ratio and nanoscale features in silicon. 2009. https://www.researchgate.net/publication/215521051_White_paper_-_Comparison_of_etch_processes_for_patterning_high_aspect_ratio. (accessed 4 Dec 2025).

6. Kim, B. J.; Meng, E. Review of polymer MEMS micromachining. J. Micromech. Microeng. 2015, 26, 013001.

7. Mathew, R.; Ravi Sankar, A. A review on surface stress-based miniaturized piezoresistive SU-8 polymeric cantilever sensors. Nano. Micro. lett. 2018, 10, 35.

8. Teixeira, I.; Castro, I.; Carvalho, V.; et al. Polydimethylsiloxane mechanical properties: a systematic review. AIMS. Mater. Sci. 2021, 8, 952-73.

9. Coelho, B. J.; Pinto, J. V.; Martins, J.; et al. Parylene C as a multipurpose material for electronics and microfluidics. Polymers. 2023, 15, 2277.

10. Teh, K. S. Additive direct-write microfabrication for MEMS: a review. Front. Mech. Eng. 2017, 12, 490-509.

11. Golvari, P.; Kuebler, S. M. Fabrication of functional microdevices in SU-8 by multi-photon lithography. Micromachines. 2021, 12, 472.

12. Hossain, N.; Al Mahmud, M. Z.; Hossain, A.; et al. Advances of materials science in MEMS applications: a review. Results. Eng. 2024, 22, 102115.

13. Noel, J. G. Review of the properties of gold material for MEMS membrane applications. IET. Circuits. Devices. Syst. 2016, 10, 156-61.

14. Kaur, M.; Singh, K. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Mater. Sci. Eng. C. 2019, 102, 844-62.

15. Guckel, H. High-aspect-ratio micromachining via deep X-ray lithography. Proc. IEEE. 2002, 86, 1586-93.

16. Roy, N. K.; Behera, D.; Dibua, O. G.; Foong, C. S.; Cullinan, M. A. A novel microscale selective laser sintering (μ-SLS) process for the fabrication of microelectronic parts. Microsyst. Nanoeng. 2019, 5, 64.

17. Carlsen, R. W.; Sitti, M. Bio-hybrid cell-based actuators for microsystems. Small. 2014, 10, 3831-51.

18. Nipu, S. M. A.; Tang, T.; Joralmon, D.; et al. Advances and perspectives in multi-material additive manufacturing of heterogenous metal-polymer components. npj. Adv. Manuf. 2025, 2, 31.

19. Zhu, Z.; Chen, P.; Liu, K.; Escobedo, C. A versatile bonding method for PDMS and SU-8 and its application towards a multifunctional microfluidic device. Micromachines. 2016, 7, 230.

20. Niu, S.; Wang, S.; Yan, Q.; et al. Tunable piezoresistivity of low percolation threshold micro-nickel wires/PDMS conductive composite regulated by magnetic field. J. Mater. Chem. C. 2021, 9, 5908-19.

21. de Oliveira Barros, A.; Hasan Kashem, M. N.; Luna, D.; Geerts, W. J.; Li, W.; Yang, J. Magnetic properties of PDMS embedded with strontium ferrite particles cured under different magnetic field configurations. AIP. Adv. 2022, 12, 035121.

22. Li, J.; Pumera, M. 3D printing of functional microrobots. Chem. Soc. Rev. 2021, 50, 2794-838.

23. Faudzi, A. A. M.; Sabzehmeidani, Y.; Suzumori, K. Application of micro-electro-mechanical systems (MEMS) as sensors: a review. J. Robotics. Mechatronics. 2020, 32, 281-8.

24. Wang, C.; Yuan, Y.; Shojaeian, M.; et al. Electrostatic anti-spring-enhanced MEMS accelerometer with auto-tuning capability. Microsyst. Nanoeng. 2025, 11, 194.

25. Huang, W.; Yan, X.; Zhang, S.; et al. MEMS and MOEMS gyroscopes: a review. Photonic. Sens. 2023, 13, 230419.

26. Algamili, A. S.; Khir, M. H. M.; Dennis, J. O.; et al. A review of actuation and sensing mechanisms in MEMS-based sensor devices. Nanoscale. Res. Lett. 2021, 16, 16.

27. Jayaram, K.; Jafferis, N. T.; Doshi, N.; Goldberg, B.; Wood, R. J. Concomitant sensing and actuation for piezoelectric microrobots. Smart. Mater. Struct. 2018, 27, 065028.

28. Jafferis, N. T.; Helbling, E. F.; Karpelson, M.; Wood, R. J. Untethered flight of an insect-sized flapping-wing microscale aerial vehicle. Nature. 2019, 570, 491-5.

29. Fatikow, S.; Fahlbusch, S. AFM-based force microsensor for a microrobot. In Microrobotics and Microassembly Ⅲ, 2001.

30. Jing, W.; Chowdhury, S.; Guix, M.; et al. A microforce-sensing mobile microrobot for automated micromanipulation tasks. IEEE. Trans. Autom. Sci. Eng. 2018, 16, 518-30.

31. Koppal, S. J.; Gkioulekas, I.; Young, T.; et al. Toward wide-angle microvision sensors. IEEE. Trans. Pattern. Anal. Mach. Intell. 2013, 35, 2982-96.

32. Yang, S. P.; Seo, Y. H.; Kim, J. B.; Kim, H.; Jeong, K. H. Optical MEMS devices for compact 3D surface imaging cameras. Micro. Nano. Syst. Lett. 2019, 7, 8.

33. Bianchi, F.; Masaracchia, A.; Shojaei Barjuei, E.; et al. Localization strategies for robotic endoscopic capsules: a review. Expert. Rev. Med. Devices. 2019, 16, 381-403.

34. Bayer, I. S. MEMS-based tactile sensors: materials, processes and applications in robotics. Micromachines. 2022, 13, 2051.

35. Han, X.; Huang, M.; Wu, Z.; et al. Advances in high-performance MEMS pressure sensors: design, fabrication, and packaging. Microsyst. Nanoeng. 2023, 9, 156.

36. Zhao, X.; Wang, L.; Hao, Y.; Zhao, Y.; Zhang, J. Flexible sensors for force detection: a review. Surf. Interfaces. 2025, 72, 107361.

37. Bichurin, M.; Petrov, R.; Sokolov, O.; et al. Magnetoelectric magnetic field sensors: a review. Sensors. 2021, 21, 6232.

38. Wei, S.; Liao, X.; Zhang, H.; Pang, J.; Zhou, Y. Recent progress of fluxgate magnetic sensors: basic research and application. Sensors. 2021, 21, 1500.

39. Jogschies, L.; Klaas, D.; Kruppe, R.; et al. Recent developments of magnetoresistive sensors for industrial applications. Sensors. 2015, 15, 28665-89.

40. Liu, D. K. C.; Friend, J.; Yeo, L. A brief review of actuation at the micro-scale using electrostatics, electromagnetics and piezoelectric ultrasonics. Acoust. Sci. Technol. 2010, 31, 15-23.

41. Li, L.; Brown, J.; Uttamchandani, D. Flexing of scratch drive actuator plates: modelling and experimentation. IEE. Proc. Sci. Meas. Technol. 2004, 151, 137-41.

42. Basset, P.; Kaiser, A.; Bigotte, P.; Collard, D.; Buchaillot, L. A large stepwise motion electrostatic actuator for a wireless microrobot. In Technical Digest. MEMS 2002 IEEE International Conference. Fifteenth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No. 02CH37266), Las Vegas, USA. January 24-24, 2002. IEEE; 2002. pp. 606–9.

43. Honarmandi, P.; Zu, J. W.; Behdinan, K. Analytical study and design characteristics of scratch drive actuators. Sens. Actuators. A. Phys. 2010, 160, 116-24.

44. Drew, D.; Contreras, D. S.; Pister, K. S. J. First thrust from a microfabricated atmospheric ion engine. In 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), Las Vegas, USA. January 22-26, 2017. IEEE; 2017. pp. 346–9.

45. Donald, B. R.; Levey, C. G.; Paprotny, I. Planar microassembly by parallel actuation of MEMS microrobots. J. Microelectromech. Syst. 2008, 17, 789-808.

46. Saito, K.; Maezumi, K.; Naito, Y.; et al. Neural networks integrated circuit for biomimetics MEMS microrobot. Robotics. 2014, 3, 235-46.

47. Wang, J.; Jiao, N.; Tung, S.; Liu, L. Magnetic microrobot and its application in a microfluidic system. Robot. Biomim. 2014, 1, 18.

48. Gerratt, A. P.; Bergbreiter, S. Incorporating compliant elastomers for jumping locomotion in microrobots. Smart. Mater. Struct. 2012, 22, 014010.

49. Sitti, M. Mobile microrobotics. MIT Press; 2017. https://mitpress.mit.edu/9780262036436/mobile-microrobotics/. (accessed 4 Dec 2025).

50. Cheng, J.; Xue, N.; Qiu, B.; et al. Recent design and application advances in micro-electro-mechanical system (MEMS) electromagnetic actuators. Micromachines. 2025, 16, 670.

51. Fath, A.; Xia, T.; Li, W. Recent advances in the application of piezoelectric materials in microrobotic systems. Micromachines. 2022, 13, 1422.

52. Kedzierski, J.; Chea, H. Multilayer microhydraulic actuators with speed and force configurations. Microsyst. Nanoeng. 2021, 7, 22.

53. Ruiz-Díez, V.; Hernando-García, J.; Toledo, J.; Ababneh, A.; Seidel, H.; Sánchez-Rojas, J. L. Piezoelectric MEMS linear motor for nanopositioning applications. Actuators. 2021, 10, 36.

54. Shen, Y. Current status and application of micro-electromechanical systems (MEMS). Highlights. Sci. Eng. Technol. 2023, 46, 97-105.

55. Lyu, S.; Tamaki, Y.; Morishita, K.; et al. Development of rotary-type electrostatic motor for MEMS microrobot. Artif. Life. Robot. 2024, 30, 148-55.

56. Takeda, M.; Shimoyama, I. Slip and magnetic attraction effects in a microrobot with magnetic-wheels and skid-steering. Micromachines. 2019, 10, 379.

57. Liu, B. Research on the torque characteristic of disc micromotor on axial magnetic field. In 2012 2nd International Conference on Consumer Electronics, Communications and Networks (CECNet), Yichang, China. April 21-23, 2012. IEEE; 2012. pp. 3480–4.

58. Gu, G. Y.; Zhu, L. M.; Su, C. Y.; Ding, H. Motion control of piezoelectric positioning stages: modeling, controller design, and experimental evaluation. IEEE/ASME. Trans. Mechatronics. 2012, 18, 1459-71.

59. Shen, H.; Cai, S.; Wang, Z.; Ge, Z.; Yang, W. Magnetically driven microrobots: recent progress and future development. Mater. Design. 2023, 227, 111735.

60. Merzaghi, S.; Koechli, C.; Perriard, Y. Development of a hybrid MEMS BLDC micromotor. IEEE. Trans. Ind. Appl. 2010, 47, 3-11.

61. Jani, J. M.; Leary, M.; Subic, A.; Gibson, M. A. A review of shape memory alloy research, applications and opportunities. Mater. Design. 2014, 56, 1078-113.

62. Meng, H.; Li, G. A review of stimuli-responsive shape memory polymer composites. Polymer. 2013, 54, 2199-221.

63. Liu, Q.; Wang, W.; Reynolds, M. F.; et al. Micrometer-sized electrically programmable shape-memory actuators for low-power microrobotics. Sci. Robot. 2021, 6, eabe6663.

64. Conway, B. E.; Barnett, B.; Angerstein-Kozlowska, H.; Tilak, B. V. A surface - electrochemical basis for the direct logarithmic growth law for initial stages of extension of anodic oxide films formed at noble metals. J. Chem. Phys. 1990, 93, 8361-73.

65. Ren, L.; Wang, W.; Mallouk, T. E. Two forces are better than one: combining chemical and acoustic propulsion for enhanced micromotor functionality. Acc. Chem. Res. 2018, 51, 1948-56.

66. Aghakhani, A.; Pena-Francesch, A.; Bozuyuk, U.; Cetin, H.; Wrede, P.; Sitti, M. High shear rate propulsion of acoustic microrobots in complex biological fluids. Sci. Adv. 2022, 8, eabm5126.

67. Villa, K.; Viktorova, J.; Plutnar, J.; Ruml, T.; Hoang, L.; Pumera, M. Chemical microrobots as self-propelled microbrushes against dental biofilm. Cell. Rep. Phys. Sci. 2020, 1, 100181.

68. Wang, L.; Chen, L.; Zheng, X.; et al. Multimodal bubble microrobot near an air-water interface. Small. 2022, 18, 2203872.

69. Goldberg, B.; Zufferey, R.; Doshi, N.; et al. Power and control autonomy for high-speed locomotion with an insect-scale legged robot. IEEE. Robot. Autom. Lett. 2018, 3, 987-93.

70. Teichert, K.; Oldham, K. Simulation of thin-film battery response to periodic loading by a transition matrix approximation using boundary and nonlinearity error analysis. J. Energy. Storage. 2017, 14, 94-105.

71. Oukassi, S.; Poncet, S.; Frutos, J. R.; Salot, R. Design, microfabrication and characterization of free form factor, lightweight thin film battery for powering bioinspired nano-drones based on MEMS actuation. J. Phys. Conf. Ser. 2019, 1407, 012036.

72. Mishra, S.; Unnikrishnan, L.; Nayak, S. K.; Mohanty, S. Advances in piezoelectric polymer composites for energy harvesting applications: a systematic review. Macromol. Mater. Eng. 2019, 304, 1800463.

73. Hao, D.; Qi, L.; Tairab, A. M.; et al. Solar energy harvesting technologies for PV self-powered applications: a comprehensive review. Renew. Energy. 2022, 188, 678-97.

74. Ridwan, M.; Gasulla, M.; Reverter, F. Principle and applications of thermoelectric generators: a review. Sensors. 2025, 25, 2484.

75. Tran, L. G.; Cha, H. K.; Park, W. T. RF power harvesting: a review on designing methodologies and applications. Micro. Nano. Syst. Lett. 2017, 5, 14.

76. Kim, D.; Kim, J.; Park, B.; Kim, H.; Huh, S.; Ahm, S. Instantaneous magnetic force evaluation on a magnetic material for wireless power transfer based microrobot propulsion. In 2020 IEEE Wireless Power Transfer Conference (WPTC), Seoul, Korea. November 15-19, 2020. IEEE; 2020. pp. 38–40.

77. Bui, H. N.; Pham, T. S.; Kim, J. S.; Lee, J. W. Field-focused reconfigurable magnetic metamaterial for wireless power transfer and propulsion of an untethered microrobot. J. Magn. Magn. Mater. 2020, 494, 165778.

78. Lecluyse, C.; Minnaert, B.; Kleemann, M. A review of the current state of technology of capacitive wireless power transfer. Energies. 2021, 14, 5862.

79. Xu, R.; Xu, Q. A survey of recent developments in magnetic microrobots for micro-/nano-manipulation. Micromachines. 2024, 15, 468.

80. Li, J.; Wang, H.; Shi, Q.; et al. Biped walking of magnetic microrobot in oscillating field for indirect manipulation of non-magnetic objects. IEEE. Trans. Nanotechnol. 2019, 19, 21-4.

81. Hussein, H.; Bazroun, A. A.; Fariborzi, H. Microrobotic leg with expanded planar workspace. IEEE. Robot. Autom. Lett. 2022, 7, 5998-6004.

82. Li, Z.; Guo, Z.; Zhang, F.; et al. Inhalable biohybrid microrobots: a non-invasive approach for lung treatment. Nat. Commun. 2025, 16, 666.

83. Zhang, F.; Guo, Z.; Li, Z.; et al. Biohybrid microrobots locally and actively deliver drug-loaded nanoparticles to inhibit the progression of lung metastasis. Sci. Adv. 2024, 10, eadn6157.

84. Wang, B.; Chan, K. F.; Yuan, K.; et al. Endoscopy-assisted magnetic navigation of biohybrid soft microrobots with rapid endoluminal delivery and imaging. Sci. Robot. 2021, 6, eabd2813.

85. Hao, Z.; Mayya, S.; Notomista, G.; Hutchinson, S.; Egerstedt, M.; Ansari, A. Controlling collision-induced aggregations in a swarm of micro bristle robots. IEEE. Trans. Robot. 2023, 39, 590-604.

86. Johnson, B. V.; Chowdhury, S.; Cappelleri, D. J. Local magnetic field design and characterization for independent closed-loop control of multiple mobile microrobots. IEEE/ASME. Trans. Mechatron. 2020, 25, 526-34.

87. Wang, Y.; Wang, B.; Zhang, Y.; et al. T-phage inspired piezoelectric microrobot. Int. J. Mech. Sci. 2022, 231, 107596.

88. Liu, D.; Liu, X.; Chen, Z.; et al. Magnetically driven soft continuum microrobot for intravascular operations in microscale. Cyborg. Bionic. Syst. 2022, 2022, 9850832.

89. Giltinan, J.; Katsamba, P.; Wang, W.; Lauga, E.; Sitti, M. Selectively controlled magnetic microrobots with opposing helices. Appl. Phys. Lett. 2020, 116, 134101.

90. Jeong, J.; Jang, D.; Kim, D.; Lee, D.; Chung, S. K. Acoustic bubble-based drug manipulation: carrying, releasing and penetrating for targeted drug delivery using an electromagnetically actuated microrobot. Sens. Actuators. A. Phys. 2020, 306, 111973.

91. Li, Z.; Wang, D.; Luan, H.; et al. Picoeukaryote-based biohybrid microrobots for active delivery in the kidney. Sci. Adv. 2025, 11, eadw8578.

92. Li, Z.; Duan, Y.; Zhang, F.; et al. Biohybrid microrobots regulate colonic cytokines and the epithelium barrier in inflammatory bowel disease. Sci. Robot. 2024, 9, eadl2007.

93. Chen, Y.; Zhao, H.; Mao, J.; et al. Controlled flight of a microrobot powered by soft artificial muscles. Nature. 2019, 575, 324-9.

94. Kim, S.; Hsiao, Y. H.; Ren, Z.; Huang, J.; Chen, Y. Acrobatics at the insect scale: a durable, precise, and agile micro-aerial robot. Sci. Robot. 2025, 10, eadp4256.

95. Hsiao, Y. H.; Bai, S.; Guan, Z.; et al. Hybrid locomotion at the insect scale: combined flying and jumping for enhanced efficiency and versatility. Sci. Adv. 2025, 11, eadu4474.

96. Leveziel, M.; Haouas, W.; Laurent, G. J.; Gauthier, M.; Dahmouche, R. MiGriBot: a miniature parallel robot with integrated gripping for high-throughput micromanipulation. Sci. Robot. 2022, 7, eabn4292.

97. Zhang, Y.; Meng, M. Q. H.; Liu, L. Design and control of a compact electromagnetically driven laser scanner for robotic-assisted endoscopic microsurgeries. IEEE. Trans. Autom. Sci. Eng. 2024, 21, 5997-6010.

98. Wang, C.; Wang, Y.; Fang, W.; et al. Design of a large-range rotary microgripper with freeform geometries using a genetic algorithm. Microsyst. Nanoeng. 2022, 8, 3.

99. Wang, F.; Shi, B.; Huo, Z.; Tian, Y.; Zhang, D. Design and control of a spatial micromanipulator inspired by deployable structure. IEEE. Trans. Ind. Electron. 2021, 69, 971-9.

100. Lyu, Z.; Xu, Q. Design of a new bio-inspired dual-axis compliant micromanipulator with millimeter strokes. IEEE. Trans. Robot. 2022, 39, 470-84.

101. Wu, Z.; Chen, Y.; Mukasa, D.; Pak, O. S.; Gao, W. Medical micro/nanorobots in complex media. Chem. Soc. Rev. 2020, 49, 8088-112.

102. Chen, F.; Jiang, P.; Yan, G.; Wang, W.; Meng, Y. Design of multi-coil wireless power transfer system for gastrointestinal capsule robot. J. Shanghai. Jiaotong. Univ. 2021, 26, 76-83.

103. Sarker, M. R.; Riaz, A.; Lipu, M. S. H.; et al. Micro energy harvesting for IoT platform: review analysis toward future research opportunities. Heliyon. 2024, 10, e27778.

104. Fuller, S. B.; Karpelson, M.; Censi, A.; Ma, K. Y.; Wood, R. J. Controlling free flight of a robotic fly using an onboard vision sensor inspired by insect ocelli. J. R. Soc. Interface. 2014, 11, 20140281.

105. De Rivaz, S. D.; Goldberg, B.; Doshi, N.; Jayaram, K.; Zhou, J.; Wood, R. J. Inverted and vertical climbing of a quadrupedal microrobot using electroadhesion. Sci. Robot. 2018, 3, eaau3038.

106. Yang, L.; Yu, J.; Yang, S.; Wang, B.; Nelson, B. J.; Zhang, L. A survey on swarm microrobotics. IEEE. Trans. Robot. 2021, 38, 1531-51.

107. Karpelson, M.; Waters, B. H.; Goldberg, B.; Mahoney, B.; Ozcan, O.; Baisch, A. A wirelessly powered, biologically inspired ambulatory microrobot. In 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China. May 31 - June 07, 2014. IEEE; 2014. pp. 2384–91.

108. Ye, X.; Su, Y.; Guo, S.; Wang, T. Infrared motion guidance and obstacle avoidance of an ICPF actuated underwater microrobot. In 2007 International Conference on Mechatronics and Automation, Harbin, China. August 05-08, 2007. IEEE; 2007. pp. 1851–6.

109. AMS. Original Datasheet of the TMD2635; 2020. https://ams.com/documents/20143/36005/TMD2635_DS000674_4-00.pdf/3bff4671-799a-efb5-4c07-6bae3ec2bddb. (accessed 15 Dec 2025).

110. Fan, X.; Forsberg, F.; Smith, A. D.; et al. Graphene ribbons with suspended masses as transducers in ultra-small nanoelectromechanical accelerometers. Nat. Electron. 2019, 2, 394-404.

Intelligence & Robotics
ISSN 2770-3541 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/