REFERENCES
1. Liu, Y.; Shen, J.; Yang, L.; Bian, G.; Yu, H. ResDO-UNet: a deep residual network for accurate retinal vessel segmentation from fundus images. Biomed. Signal. Process. Control. 2023, 79, 104087.
2. Rayachoti, E.; Gundabatini, S. G.; Vedantham, R. Recurrent Residual Puzzle based Encoder Decoder Network (R2-PED) model for retinal vessel segmentation. Multimed. Tools. Appl. 2024, 83, 39621-45.
3. Pan, J.; Gong, J.; Yu, M.; Zhang, J.; Guo, Y.; Zhang, G. A multilevel remote relational modeling network for accurate segmentation of fundus blood cessels. IEEE. Trans. Instrum. Meas. 2022, 71, 1-14.
4. Li, Z.; Guan, J.; Wang, H. A novel dual-supervised convolutional network for retinal vessel segmentation. In 2022 International Conference on Image Processing, Computer Vision and Machine Learning (ICICML), Xi'an, China. Oct 28-30, 2022. IEEE; 2022. pp. 567–71.
5. Chen, Y.; Ge, P.; Wang, G.; Weng, G.; Chen, H. An overview of intelligent image segmentation using active contour models. Intell. Robot. 2023, 3, 23-55.
6. Wang, H.; Zuo, W.; Li, B.; Pan, X.; Liu, Z.; Lan, R. Dilation-supervised learning: a novel strategy for scale difference in retinal vessel segmentation. IEEE. Trans. Artif. Intell. 2024, 5, 1693-707.
7. Kumar, K. S.; Singh, N. P. Analysis of retinal blood vessel segmentation techniques: a systematic survey. Multimed. Tools. Appl. 2023, 82, 7679-733.
8. Singh, L. K.; Khanna, M.; Thawkar, S.; Singh, R. Deep-learning based system for effective and automatic blood vessel segmentation from Retinal fundus images. Multimed. Tools. Appl. 2024, 83, 6005-49.
9. Ni, J.; Chen, Y.; Chen, Y.; Zhu, J.; Ali, D.; Cao, W. A survey on theories and applications for self-driving cars based on deep learning methods. Appl. Sci. 2020, 10, 2749.
10. Ye, C.; Che, K.; Yao, Y.; et al. A deep learning-based system for accurate detection of anatomical landmarks in colon environment. Intell. Robot. 2024, 4, 164-78.
11. Ni, J.; Chen, Y.; Tang, G.; Shi, J.; Cao, W.; Shi, P. Deep learning-based scene understanding for autonomous robots: a survey. Intell. Robot. 2023, 3, 374-401.
12. Wang., H.; Xu, G.; Pan, X.; et al. Attention-inception-based U-Net for retinal vessel segmentation with advanced residual. Comput. Electr. Eng. 2022, 98, 107670.
13. Zhou, Z.; Rahman Siddiquee, M. M.; Tajbakhsh, N.; Liang, J. UNet++: a nested U-Net architecture for medical image segmentation. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, Granada, Spain. Springer, Cham; 2018. pp. 3–11.
14. Li, L.; Qin, J.; Lv, L.; et al. ICUnet++: an Inception-CBAM network based on Unet++ for MR spine image segmentation. Int. J. Mach. Learn. Cybern. 2023, 14, 3671-83.
15. Tang, G.; Ni, J.; Chen, Y.; Cao, W.; Yang, S. X. An improved CycleGAN based model For low-light image enhancement. IEEE. Sens. J. 2024, 24, 21879-92.
16. Yang, X.; Li, Z.; Guo, Y.; Zhou, D. DCU-net: a deformable convolutional neural network based on cascade U-net for retinal vessel segmentation. Multimed. Tools. Appl. 2022, 81, 15593-607.
17. Kang, N.; Wang, M.; Pang, C.; et al. Cross-patch feature interactive net with edge refinement for retinal vessel segmentation. Comput. Biol. Med. 2024, 174, 108443.
18. Ahmad, P.; Jin, H.; Alroobaea, R.; et al. MH UNet: a multi-scale hierarchical based architecture for medical image segmentation. IEEE. Access. 2021, 9, 148384-408.
19. Deng, Y.; Hou, Y.; Yan, J.; Zeng, D. ELU-Net: an efficient and lightweight U-Net for medical image segmentation. IEEE. Access. 2022, 10, 35932-41.
20. Nguyen, T. C.; Nguyen, T. P.; Diep, G. H.; Tran-Dinh, A. H.; Nguyen, T. V.; Tran, M. T. CCBANet: cascading context and balancing attention for polyp segmentation. In Medical Image Computing and Computer Assisted Intervention - MICCAI 2021, Strasbourg, France. Springer, Cham; 2021. pp. 633–43.
21. Xiang, Z.; Ning, C.; Li, M.; et al. AFFD-Net: a dual-decoder network based on attention-enhancing and feature fusion for retinal vessel segmentation. IEEE. Access. 2023, 11, 45871-87.
22. Liskowski, P.; Krawiec, K. Segmenting retinal blood vessels with deep neural networks. IEEE. Trans. Med. Imaging. 2016, 35, 2369-80.
23. Li, J.; Gao, G.; Yang, L.; Liu, Y. A retinal vessel segmentation network with multiple-dimension attention and adaptive feature fusion. Comput. Biol. Med. 2024, 172, 108315.
24. Ye, Y.; Pan, C.; Wu, Y.; Wang, S.; Xia, Y. MFI-Net: multiscale feature interaction network for retinal vessel segmentation. Biomed. Health. Inform. 2022, 26, 4551-62.
25. Shi, T.; Ding, X.; Zhou, W.; et al. Affinity feature strengthening for accurate, complete and robust vessel segmentation. IEEE. J. Biomed. Health. Inform. 2023, 27, 4006-17.
26. Zhou, W.; Bai, W.; Ji, J.; Yi, Y.; Zhang, N.; Cui, W. Dual-path multi-scale context dense aggregation network for retinal vessel segmentation. Comput. Biol. Med. 2023, 164, 107269.
27. Guo, C.; Szemenyei, M.; Yi, Y.; Wang, W.; Chen, B.; Fan, C. SA-UNet: spatial attention U-Net for retinal vessel segmentation. In 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy. Jan 10-15, 2021. IEEE; 2021. pp. 1236–42.
28. Su, H.; Gao, L.; Wang, Z.; Yu, Y.; Hong, J.; Gao, Y. A hierarchical full-resolution fusion network and topology-aware connectivity booster for retinal vessel segmentation. IEEE. Trans. Instrum. Meas. 2024, 73, 1-16.
29. Dong, F.; Wu, D.; Guo, C.; Zhang, S.; Yang, B.; Gong, X. CRAUNet: a cascaded residual attention U-Net for retinal vessel segmentation. Comput. Biol. Med. 2022, 147, 105651.
30. Mahmoud, M.; Mansour, M.; Elrefai, H. M.; Hamed, A. J.; Rashed, E. A. Enhanced retinal arteries and veins segmentation through deep learning with conditional random fields. Biomed. Signal. Process. Control. 2025, 106, 107747.
31. Wang, G.; Huang, Y.; Ma, K.; et al. Automatic vessel crossing and bifurcation detection based on multi-attention network vessel segmentation and directed graph search. Comput. Biol. Med. 2023, 155, 106647.
32. Mishra, A. Contrast Limited Adaptive Histogram Equalization (CLAHE) approach for enhancement of the microstructures of friction stir welded joints. arXiv 2021, arXiv: 2109.00886. https://doi.org/10.48550/arXiv.2109.00886. (accessed 21 Jul 2025).
33. Ni, J.; Shen, K.; Chen, Y.; Yang, S. X. An improved SSD-like deep network-based object detection method for indoor scenes. IEEE. Trans. Instrum. Meas. 2023, 72, 1-15.
34. Yang, D.; Zhao, H.; Yu, K.; Geng, L. NAUNet: lightweight retinal vessel segmentation network with nested connections and efficient attention. Multimed. Tools. Appl. 2023, 82, 25357-79.
35. Du, X. F.; Wang, J. S.; Sun, W. Z.; Zhang, Z. H.; Zhang, Y. H. Bi-directional ConvLSTM residual U-Net retinal vessel segmentation algorithm with improved focal loss function. J. Intell. Fuzzy Syst. 2024, 46, 1-20. https://www.researchgate.net/publication/379530297_Bi-directional_ConvLSTM_residual_U-Net_retinal_vessel_segmentation_algorithm_with_improved_focal_loss_function. (accessed 21 Jul 2025).
36. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015, Munich, Germany. Springer, Cham; 2015. pp. 234–41.
37. Zahangir Alom, M.; Yakopcic, C.; Taha, T. M.; Asari, V. K. Nuclei segmentation with recurrent residual convolutional neural networks based U-Net (R2U-Net). In NAECON 2018 - IEEE National Aerospace and Electronics Conference, Dayton, USA. Jul 23-26, 2018. IEEE; 2018. pp. 228-33.
38. Gu, Z.; Cheng, J.; Fu, H.; et al. CE-Net: context encoder network for 2D medical image segmentation. IEEE. Trans. Med. Imaging. 2019, 38, 2281-92.
39. Feng, S.; Zhao, H.; Shi, F.; et al. CPFNet: context pyramid fusion network for medical image segmentation. IEEE. Trans. Med. Imaging. 2020, 39, 3008-18.
40. Ma, H.; Zou, Y.; Liu, P. X. MHSU-Net: a more versatile neural network for medical image segmentation. Comput. Methods. Programs. Biomed. 2021, 208, 106230.
41. Li, J.; Gao, G.; Yang, L.; Liu, Y.; Yu, H. DEF-Net: a dual-encoder fusion network for fundus retinal vessel segmentation. Electronics 2022, 11, 3810.
42. Chen, G.; Li, L.; Dai, Y.; Zhang, J.; Yap, M. H. AAU-Net: an adaptive attention U-Net for breast lesions segmentation in ultrasound images. IEEE. Trans. Med. Imaging. 2023, 42, 1289-300.
43. Liu, Y.; Shen, J.; Yang, L.; Yu, H.; Bian, G. Wave-Net: a lightweight deep network for retinal vessel segmentation from fundus images. Comput. Biol. Med. 2023, 152, 106341.
44. Kumar, A.; Agrawal, R. K.; Joseph, L. IterMiUnet: a lightweight architecture for automatic blood vessel segmentation. Multimed. Tools. Appl. 2023, 82, 43207-31.
45. Wang, Z.; Jia, L. V.; Liang, H. Partial class activation mapping guided graph convolution cascaded U-Net for retinal vessel segmentation. Comput. Biol. Med. 2024, 178, 108736.
46. Isensee, F.; Wald, T.; Ulrich, C.; et al. nnU-Net revisited: a call for rigorous validation in 3D medical image segmentation. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2024. Springer, Cham; 2024. pp. 488–98.
47. Ding, W.; Sun, Y.; Huang, J.; et al. RCAR-UNet: retinal vessel segmentation network algorithm via novel rough attention mechanism. Inform. Sci. 2024, 657, 120007.
48. Yang, B.; Qin, L.; Peng, H.; Guo, C.; Luo, X.; Wang, J. SDDC-Net: a U-shaped deep spiking neural P convolutional network for retinal vessel segmentation. Digit. Signal. Process. 2023, 136, 104002.
49. Kato, S.; Hotta, K. Expanded tube attention for tubular structure segmentation. Int. J. Comput. Assist. Radiol. Surg. 2024, 19, 2187-93.
50. Zhuang, J. LadderNet: multi-path networks based on U-Net for medical image segmentation. arXiv 2018, arXiv: 1810.07810. https://doi.org/10.48550/arXiv.1810.07810. (accesssed 21 Jul 2025).
51. Schlemper, J.; Oktay, O.; Schaap, M.; et al. Attention gated networks: learning to leverage salient regions in medical images. Med. Image. Anal. 2019, 53, 197-207.
52. Li, X.; Jiang, Y.; Li, M.; Yin, S. Lightweight attention convolutional neural network for retinal vessel image segmentation. IEEE. Trans. Ind. Inform. 2021, 17, 1958-67.
53. Zhu, J.; Lan, Z.; Wen, X.; Cai, S.; Xu, Y. DASENet: a detail aware U-Net with shuffle excitation for retinal vessel segmentation. In 2023 6th International Conference on Software Engineering and Computer Science (CSECS), Chengdu, China. Dec 22-24, 2023. IEEE; 2023. p. 1–7.