REFERENCES
1. Babot, D.; Hernández-Jover, M.; Caja, G.; Santamarina, C.; Ghirardi, J. J. Comparison of visual and electronic identification devices in pigs: on-farm performances. J. Anim. Sci. 2006, 84, 2575-81.
2. Eradus, W. J.; Jansen, M. B. Animal identification and monitoring. Comput. Electron. Agric. 1999, 24, 91-8.
3. Liu, S. Research on RFID temperature measurement and positioning electronic ear tags for livestock farming - based on blockchain in smart agriculture. Agric. Mech. Res. 2025, 47, 181-5.
4. Boonsong, W. Animal identification and performance analysis based on RFID-IoT smart farming applications. Electrotech. Rev. 2022, 1, 8-11.
5. Huang, Y.; Xiao, D.; Liu, J.; et al. Analysis of pig activity level and body temperature variation based on ear tag data. Comput. Electron. Agric. 2024, 219, 108768.
6. Tobin, C. T.; Bailey, D. W.; Stephenson, M. B.; Trotter, M. G.; Knight, C. W.; Faist, A. M. Opportunities to monitor animal welfare using the five freedoms with precision livestock management on rangelands. Front. Anim. Sci. 2022, 3, 928514.
7. Adrion, F.; Kapun, A.; Holland, E.; Staiger, M.; Löb, P.; Gallmann, E. Novel approach to determine the influence of pig and cattle ears on the performance of passive UHF-RFID ear tags. Comput. Electron. Agric. 2017, 140, 168-79.
8. Liang, W.; Cao, J.; Fan, Y.; Zhu, K.; Dai, Q. Modeling and implementation of cattle/beef supply chain traceability using a distributed RFID-based framework in China. PLoS. One. 2015, 10, e0139558.
9. Caja, G.; Díaz-Medina, E.; Salama, A. A.; et al. Comparison of visual and electronic devices for individual identification of dromedary camels under different farming conditions. J. Anim. Sci. 2016, 94, 3561-71.
10. Ait-Saidi, A.; Caja, G.; Salama, A. A.; Carné, S. Implementing electronic identification for performance recording in sheep: I. Manual versus semiautomatic and automatic recording systems in dairy and meat farms. J. Dairy. Sci. 2014, 97, 7505-14.
11. Schoenecker, K. A.; King, S. R. B.; Collins, G. H. Evaluation of the impacts of radio-marking devices on feral horses and burros in a captive setting. Hum. Wildl. Interact. 2020, 14, 73-86. https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1577&context=hwi. (accessed 15 May 2025).
12. Edwards, D. S.; Johnston, A. M. Welfare implications of sheep ear tags. Vet. Rec. 1999, 144, 603-6.
13. Johnston, A. M.; Edwards, D. S. Welfare implications of identification of cattle by ear tags. Vet. Rec. 1996, 138, 612-4.
14. Simmons, B. A. An evaluation of electronic identification in 4-H beef, sheep and swine. 2009. https://docs.lib.purdue.edu/dissertations/AAI1469920. (accessed 15 May 2025).
15. Chung, H.; Vu, H.; Kim, Y.; Choi, C. Y. Subcutaneous temperature monitoring through ear tag for heat stress detection in dairy cows. Biosyst. Eng. 2023, 235, 202-14.
16. Caja, G.; Carné, S.; Salama, A.; et al. State-of-the-art of electronic identification techniques and applications in goats. Small. Rumin. Res. 2014, 121, 42-50.
17. Hammer, N.; Adrion, F.; Staiger, M.; Holland, E.; Gallmann, E.; Jungbluth, T. Comparison of different ultra-high-frequency transponder ear tags for simultaneous detection of cattle and pigs. Livest. Sci. 2016, 187, 125-37.
18. Bai, H.; Bai, Y.; Hu, S.; et al. Comparison of four radio frequency identification (RFID) ear tags applied in swine farms-all databases. Jiangsu J. Agric. Sci. 2010, 26, 446-8. https://kns.cnki.net/kcms2/article/abstract?v=8t0HcLKTPb16RwdNImpdUmE2OvofTzPOPz6ElLuWfBJdaZ7VcN57VXfOSuP-nOfunld8E2Opld5hVTD2USvzuYgQhUmF-yCgbqvKDUmP2uRyYbRUUH42zZtrCr8vHQjepRgzT0l32Awfzf6S0kUlhrWkim2UWMwkAvaGlxonphVDfaSQOnM3lu9ifVDLFh0T&uniplatform=NZKPT. (accessed 15 May 2025).
19. Zhao, D.; Dai, C. Research on electronic ear tag of new two-dimensional bar code on based on GM code. In: Zhang H, Zhao RMH, eds. Proceedings of 2008 International Conference on Informationization, Automation And Electrification in Agriculture. Orient Acad Forum; 2008. pp. 12-15. https://webofscience.clarivate.cn/wos/alldb/full-record/WOS:000263597600003. (accessed 15 May 2025).
20. Mora, M.; Piles, M.; David, I.; Rosa, G. J. M. Integrating computer vision algorithms and RFID system for identification and tracking of group-housed animals: an example with pigs. J. Anim. Sci. 2024, 102, skae174.
21. Mcallister, T. A.; Gibb, D. J.; Kemp, R. A.; et al. Electronic identification: applications in beef production and research. Can. J. Anim. Sci. 2000, 80, 381-92.
22. Carné, S.; Caja, G.; Ghirardi, J. J.; Salama, A. A. Long-term performance of visual and electronic identification devices in dairy goats. J. Dairy. Sci. 2009, 92, 1500-11.
23. Zhang, J.; Zhou, H. Comparisons on animal ID technology. Chin. J. Animal. Sci. , 2008, 55-8. https://caod.oriprobe.com/articles/14749851/Comparisons_on_Animal_ID_Technology.htm. (accessed 15 May 2025).
24. Zin, T. T.; Pwint, M. Z.; Seint, P. T.; et al. Automatic cow location tracking system using ear tag visual analysis. Sensors 2020, 20, 3564.
25. Herlin, A.; Brunberg, E.; Hultgren, J.; Högberg, N.; Rydberg, A.; Skarin, A. Animal welfare implications of digital tools for monitoring and management of cattle and sheep on pasture. Animals 2021, 11, 829.
26. Panckhurst, B.; Brown, P.; Payne, K.; Molteno, T. C. A. Solar-powered sensor for continuous monitoring of livestock position. In: 2015 IEEE Sensors Applications Symposium (SAS), Zadar, Croatia. Apr 13-15, 2015. IEEE; 2015. pp. 1-6.
27. Caja, G.; Hernández-Jover, M.; Conill, C.; et al. Use of ear tags and injectable transponders for the identification and traceability of pigs from birth to the end of the slaughter line. J. Anim. Sci. 2005, 83, 2215-24.
28. Gosálvez, L. F.; Santamarina, C.; Averós, X.; Hernández-Jover, M.; Caja, G.; Babot, D. Traceability of extensively produced Iberian pigs using visual and electronic identification devices from farm to slaughter. J. Anim. Sci. 2007, 85, 2746-52.
29. Shanahan, C.; Kernan, B.; Ayalew, G.; Mcdonnell, K.; Butler, F.; Ward, S. A framework for beef traceability from farm to slaughter using global standards: an Irish perspective. Comput. Electron. Agric. 2009, 66, 62-9.
30. Hammer, N.; Adrion, F.; Jezierny, D.; Gallmann, E.; Jungbluth, T. Methodology of a dynamic test bench to test ultra-high-frequency transponder ear tags in motion. Comput. Electron. Agric. 2015, 113, 81-92.
31. Madec, F.; Geers, R.; Vesseur, P.; Kjeldsen, N.; Blaha, T. Traceability in the pig production chain. Rev. Sci. Tech. 2001, 20, 523-37.
32. Gao, T.; Fan, D.; Wu, H.; et al. Research on the vision-based dairy cow ear tag recognition method. Sensors 2024, 24, 2194.
33. Li, Y. Discussion on accelerating the construction of animal identification and traceability system for animal products in China in the new period. Chin. J. Anim. Husbandry. 2013, 49, 32-5. (in Chinese). https://www.cnki.com.cn/Article/CJFDTotal-ZGXM201314009.htm. (accessed 15 May 2025).
34. Maselyne, J.; Saeys, W.; De Ketelaere, B.; et al. Validation of a high frequency radio frequency identification (HF RFID) system for registering feeding patterns of growing-finishing pigs. Comput. Electron. Agric. 2014, 102, 10-8.
35. Stankovski, S.; Ostojic, G.; Senk, I.; Rakic-Skokovic, M.; Trivunovic, S.; Kucevic, D. Dairy cow monitoring by RFID. Sci. Agric. 2012, 69, 75-80.
36. Stärk, K. D.; Morris, R. S.; Pfeiffer, D. U. Comparison of electronic and visual identification systems in pigs. Livest. Prod. Sci. 1998, 53, 143-52.
37. Santamarina, C.; Hernández-Jover, M.; Babot, D.; Caja, G. Comparison of visual and electronic identification devices in pigs: slaughterhouse performance. J. Anim. Sci. 2007, 85, 497-502.
38. Lee, G.; Ogata, K.; Kawasue, K.; Sakamoto, S.; Ieiri, S. Identifying-and-counting based monitoring scheme for pigs by integrating BLE tags and WBLCX antennas. Comput. Electron. Agric. 2022, 198, 107070.
39. Kapun, A.; Adrion, F.; Gallmann, E. Case study on recording pigs’ daily activity patterns with a UHF-RFID system. Agriculture 2020, 10, 542.
40. Xu, P.; Zhang, Y.; Ji, M.; et al. Advanced intelligent monitoring technologies for animals: a survey. Neurocomputing 2024, 585, 127640.
41. Kowalski, L. H.; Monteiro, A. L. G.; Hentz, F.; et al. Electronic and visual identification devices for adult goats reared in semi-intensive system. R. Bras. Zootec. 2014, 43, 100-4.
42. do Prado Paim, T.; Borges, B. O.; de Mello Tavares Lima, P.; et al. Thermographic evaluation of climatic conditions on lambs from different genetic groups. Int. J. Biometeorol. 2013, 57, 59-66.
43. Quispe-López, M.; Barreda, S.; Marcelo-Carranza, D.; Pacheco, V.; Aponte, H.; Ramirez, D. W. Relative abundance and habitat selection of the montane guinea pig Cavia tschudii in a wetland at coastal desert with comments on its predators. Therya 2021, 12, 423-33.
44. Saravanan, K.; Saraniva, S. Cloud IOT based novel livestock monitoring and identification system using UID. Sens. Rev. 2018, 38, 21-33.
45. Bouazza, H.; Zerzouri, O.; Bouya, M.; Charoub, A.; Hadjoudja, A. A novel RFID system for monitoring livestock health state. In: 2017 International Conference on Engineering and Technology (ICET), Antalya, Turkey. Aug 21-23, 2017. IEEE; 2017. p. 1-4.
46. Mar, C. C.; Zin, T. T.; Tin, P.; Honkawa, K.; Kobayashi, I.; Horii, Y. Cow detection and tracking system utilizing multi-feature tracking algorithm. Sci. Rep. 2023, 13, 17423.
47. Amerson, E. A.; Moss, H.; Kumar, S.; Brandebourg, T. D. Assessing the use of biometric ear tags as body temperature monitoring devices in swine. J. Anim. Sci. 2021, 99, 45-6.
48. Yang, L.; Liu, X. Y.; Kim, J. S. Cloud-based livestock monitoring system using RFID and blockchain technology. In: 2020 7th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2020 6th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom), New York, USA. Aug 01-03, 2020. IEEE; 2020. pp. 240-5.
49. Xiong, B.; Luo, Q.; Yang, L.; Pan, J. Development on mobile traceability system of feeding process of pigs and quality safety of its meat products based on 3G technology. Trans. Chin. Soc. Agric. Eng. 2012, 28, 228-33. http://www.tcsae.org/en/article/id/20121536. (accessed 15 May 2025).
50. Karakuş, M.; Karakuş, F. The use of infrared thermography for welfare assessment during the application of ear tags to lambs. Arch. Anim. Breed. 2017, 60, 297-302.
51. Bhole, A.; Udmale, S. S.; Falzon, O.; Azzopardi, G. CORF3D contour maps with application to Holstein cattle recognition from RGB and thermal images. Expert. Syst. Appl. 2022, 192, 116354.
52. Edwards, D. S. Role of farm factors in the development of longitudinally integrated food safety assurance systems for beef and lamb production. 2000. http://search.ndltd.org/show.php?id=oai%3Aunion.ndltd.org%3Abl.uk%2Foai%3Aethos.bl.uk%3A395038&back=http%3A%2F%2Fsearch.ndltd.org%2Fsearch.php%3Fq%3Dsubject%253A%2522664%2522%26start%3D10. (accessed 15 May 2025).
53. Chen, G.; Qin, W.; Ding, J.; Wan, M.; Guo, L.; Wang, W. Designing and validation of the remote monitoring system for pigs’ survival based on IoT technology. Sci. Agric. Sin. 2017, 50, 942-50.
54. Zhang, X.; Zhang, J.; Dong, M.; et al. Research on test method of UHF RFID luminous electronic ear tag. Chin. J. Vet. Pharm. 2002, 56, 75-80.
55. Mahfuz, S.; Mun, H.; Dilawar, M. A.; Yang, C. Applications of smart technology as a sustainable strategy in modern swine farming. Sustainability 2022, 14, 2607.
56. Groher, T.; Heitkämper, K.; Umstätter, C. Digital technology adoption in livestock production with a special focus on ruminant farming. Animal 2020, 14, 2404-13.
57. Wang, Y.; Yong, X.; Chen, Z.; Zheng, H.; Zhuang, J.; Liu, J. The design of an intelligent livestock production monitoring and management system. In: 2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS), Enshi, China. May 25-27, 2018. IEEE; 2018. pp. 944-8.
58. Karakus, F.; Demir, AÖ.; Akkol, S.; Düzgün, A.; Karakus, M. Performance of electronic and visual ear tags in lambs under extensive conditions in Turkey. Arch. Anim. Breed. 2015, 58, 287-92.
59. Zhang, X.; Jin, W.; Zhang, J.; Li, P. Research on low frequency electronic ear tag protocol conformance test system. Chin. J. Vet. Pharm. 2020, 54, 44-8.
60. Addo-Tenkorang, R.; Gwangwava, N.; Ogunmuyiwa, E. N.; Ude, A. U. Advanced animal track-&-trace supply-chain conceptual framework: an Internet of Things approach. Procedia. Manuf. 2019, 30, 56-63.
61. Kaniyamattam, K.; Hertl, J.; Lhermie, G.; Tasch, U.; Dyer, R.; Gröhn, Y. T. Cost benefit analysis of automatic lameness detection systems in dairy herds: a dynamic programming approach. Prev. Vet. Med. 2020, 178, 104993.
62. Bergqvist, A.; Forsberg, F.; Eliasson, C.; Wallenbeck, A. Individual identification of pigs during rearing and at slaughter using microchips. Livest. Sci. 2015, 180, 233-6.
63. Elliott, B. K. Oklahoma Cattlemens Association Members perceptions of the National Animal Identification System. 2007. http://hdl.handle.net/20.500.14446/8378. (accessed 15 May 2025).
64. Felmer, R.; Chávez, R.; Catrileo, A.; Rojas, C. Current and emergent technologies for animal identification and their use in animal traceability. Arch. Med. Vet. 2006, 38, 197-206.
65. Burose, F.; Anliker, T.; Herd, D.; Jungbluth, T.; Zähner, M. Stationary RFID antenna systems for pigs identification. Agrarforsch. Schweiz. 2010, 1, 272-9. https://www.cabidigitallibrary.org/doi/full/10.5555/20103251522. (accessed 15 May 2025).
66. Symeonaki, E.; Arvanitis, K. G.; Piromalis, D.; Tseles, D.; Balafoutis, A. T. Ontology-based IoT middleware approach for smart livestock farming toward agriculture 4.0: a case study for controlling thermal environment in a pig facility. Agronomy 2022, 12, 750.