REFERENCES

1. Chen, H.; Liu, Z.; Alippi, C.; Huang, B.; Liu, D. Explainable intelligent fault diagnosis for nonlinear dynamic systems: from unsupervised to supervised learning. IEEE. Trans. Neural. Netw. Learn. Syst. 2022, 35, 6166-79.

2. Chen, H.; Jiang, B.; Ding, S. X.; Huang, B. Data-driven fault diagnosis for traction systems in high-speed trains: a survey, challenges, and perspectives. IEEE. Trans. Intell. Transp. Syst. 2020, 23, 1700-16.

3. Arabi, A.; Ayad, M.; Bourouba, N.; et al. An efficient method for faults diagnosis in analog circuits based on machine learning classifiers. Alex. Eng. J. 2023, 77, 109-25.

4. Wang, S.; Jia, Z.; Liu, Z.; Tang, Y.; Qin, X.; Wang, X. Self-supervised contrast learning based UAV fault detection and interpretation with spatial–temporal information of multivariate flight data. Expert. Syst. Appl. 2025, 267, 126156.

5. Piccirilli, M. C.; Luchetta, A. Diagnosis in analog electronic circuits, electrical power systems and smart grids. Electronics 2022, 11, 2008.

6. Abo-elftooh, B. A.; El-Mahlawy, M. H.; Ragai, H. F. New digital testing for parametric fault detection in analog circuits using classified frequency-bands and efficient test-point selection. Ain. Shams. Eng. J. 2021, 12, 1701-21.

7. Starzyk, J. A.; Liu, D.; Liu, Z. H.; Nelson, D. E.; Rutkowski, J. O. Entropy-based optimum test points selection for analog fault dictionary techniques. IEEE. Trans. Instrum. Meas. 2004, 53, 754-61.

8. Yang, C.; Tian, S.; Long, B.; Chen, F. Methods of handling the tolerance and test-point selection problem for analog-circuit fault diagnosis. IEEE. Trans. Instrum. Meas. 2011, 60, 176-85.

9. Yang, C.; Tian, S.; Long, B.; Chen, F. A test points selection method for analog fault dictionary techniques. Analog. Integr. Circ. Sig. Process. 2010, 63, 349-57.

10. Gao, Y.; Yang, C.; Tian, S.; Chen, F. Entropy based test point evaluation and selection method for analog circuit fault diagnosis. Math. Probl. Eng. 2014, 2014, 259430.

11. Cui, Y.; Shi, J.; Wang, Z. Analog circuit test point selection incorporating discretization-based fuzzification and extended fault dictionary to handle component tolerances. J. Electron. Test. 2016, 32, 661-79.

12. Ye, X.; Chen, C.; Zhai, G. Fault localization of a switched mode power supply based on extended integer-coded dictionary method. Microelectron. Reliab. 2018, 88-90, 339-44.

13. Saeedi, S.; Pishgar, S. H.; Eslami, M. Optimum test point selection method for analog fault dictionary techniques. Analog. Integr. Circ. Sig. Process. 2019, 100, 167-79.

14. Yang, C.; Tian, S.; Long, B.; Chen, F. A novel test point selection method for analog fault dictionary techniques. J. Electron. Test. 2010, 26, 523-34.

15. Tian, S.; Yang, C.; Long, B. Selection of minimal test points set for integer-coded fault wise table. In 2009 IEEE Circuits and Systems International Conference on Testing and Diagnosis, Chengdu, China. Apr 28-29, 2009. IEEE; 2009. pp. 312-6.

16. Prasad, V. C.; Pinjala, S. N. R. A fast algorithm for the generation of fault dictionary of linear analog circuits using adjoint network approach. In 1990 IEEE International Symposium on Circuits and Systems (ISCAS), New Orleans, USA. May 01-03, 1990. IEEE; 1990. pp. 37-40.

17. Luo, H.; Wang, Y.; Lin, H.; Jiang, Y. A new optimal test node selection method for analog circuit. J. Electron. Test. 2012, 28, 279-90.

18. Tang, X.; Xu, A. Practical analog circuit diagnosis based on fault features with minimum ambiguities. J. Electron. Test. 2016, 32, 83-95.

19. Zhao, D.; He, Y. A new test point selection method for analog circuit. J. Electron. Test. 2015, 31, 53-66.

20. Ma, Q.; He, Y.; Zhou, F.; Song, P. Test point selection method for analog circuit fault diagnosis based on similarity coefficient. Math. Probl. Eng. 2018, 2018, 9714206.

21. Yang, B.; Lei, Y.; Li, X.; Li, N. Targeted transfer learning through distribution barycenter medium for intelligent fault diagnosis of machines with data decentralization. Expert. Syst. Appl. 2024, 244, 122997.

22. Van Molle, P.; Verbelen, T.; Vankeirsbilck, B.; et al. Leveraging the Bhattacharyya coefficient for uncertainty quantification in deep neural networks. Neural. Comput. Appl. 2021, 33, 10259-75.

23. Lu, J.; Yue, J.; Zhu, L.; Li, G. Variational mode decomposition denoising combined with improved Bhattacharyya distance. Measurement 2020, 151, 107283.

24. Kitahara, M.; Bi, S.; Broggi, M.; Beer, M. Nonparametric Bayesian stochastic model updating with hybrid uncertainties. Mech. Syst. Signal. Process. 2022, 163, 108195.

25. Tang, X.; Xu, A.; Niu, S. KKCV-GA-based method for optimal analog test point selection. IEEE. Trans. Instrum. Meas. 2016, 66, 24-32.

26. Wu, Y.; Liu, X.; Wang, Y. L.; Li, Q.; Guo, Z.; Jiang, Y. Improved deep PCA and Kullback–Leibler divergence based incipient fault detection and isolation of high-speed railway traction devices. Sustain. Energy. Technol. Assess. 2023, 57, 103208.

27. Pan, J.; Zou, Z.; Sun, S.; Su, Y.; Zhu, H. Research on output distribution modeling of photovoltaic modules based on kernel density estimation method and its application in anomaly identification. Sol. Energy. 2022, 235, 1-11.

28. Yu, X.; Jiang, N.; Wang, X.; Li, M. A hybrid algorithm based on grey wolf optimizer and differential evolution for UAV path planning. Expert. Syst. Appl. 2023, 215, 119327.

29. Li, Y.; Chen, H.; Lu, N.; Jiang, B.; Zio, E. Data-driven optimal test selection design for fault detection and isolation based on CCVKL method and PSO. IEEE. Trans. Instrum. Meas. 2022, 71, 1-10.

30. Alangari, N.; Menai, M. E. B.; Mathkour, H.; Almosallam, I. Intrinsically interpretable Gaussian mixture model. Information 2023, 14, 164.

Intelligence & Robotics
ISSN 2770-3541 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/