REFERENCES
1. Tang, Q.; Jiang, Y.; Xin, J.; Liao, G.; Zhou, J.; Yang, X. A novel method for the recovery of continuous missing data using multivariate variational mode decomposition and fully convolutional networks. Measurement 2023, 220, 113366.
2. Xin, J.; Jiang, Y.; Zhou, J.; Peng, L.; Liu, S.; Tang, Q. Bridge deformation prediction based on SHM data using improved VMD and conditional KDE. Eng. Struct. 2022, 261, 114285.
3. Xin, J.; Zhou, C.; Jiang, Y.; Tang, Q.; Yang, X.; Zhou, J. A signal recovery method for bridge monitoring system using TVFEMD and encoder-decoder aided LSTM. Measurement 2023, 214, 112797.
4. Li, S.; Xin, J.; Jiang, Y.; Wang, C.; Zhou, J.; Yang, X. Temperature-induced deflection separation based on bridge deflection data using the TVFEMD-PE-KLD method. J. Civil. Struct. Health. Monit. 2023, 13, 781-97.
5. Tang, Q.; Xin, J.; Jiang, Y.; Zhang, H.; Zhou, J. Dynamic response recovery of damaged structures using residual learning enhanced fully convolutional network. Int. J. Str. Stab. Dyn. 2025, 25, 2550008.
6. Tang, Q.; Xin, J.; Jiang, Y.; Zhou, J.; Li, S.; Fu, L. Fast identification of random loads using the transmissibility of power spectral density and improved adaptive multiplicative regularization. J. Sound. Vib. 2022, 534, 117033.
7. Tang, Q.; Xin, J.; Jiang, Y.; Zhou, J.; Li, S.; Chen, Z. Novel identification technique of moving loads using the random response power spectral density and deep transfer learning. Measurement 2022, 195, 111120.
8. Morgese, M.; Wang, C.; Ying, Y.; Taylor, T.; Ansari, F. Stress–strain response of optical fibers in direct tension. J. Eng. Mech. 2023, 149, 04023037.
9. Wang, C.; Ansari, F.; Wu, B.; Li, S.; Morgese, M.; Zhou, J. LSTM approach for condition assessment of suspension bridges based on time-series deflection and temperature data. Adv. Struct. Eng. 2022, 25, 3450-63.
10. Morgese, M.; Wang, C.; Taylor, T.; Etemadi, M.; Ansari, F. Distributed detection and quantification of cracks in operating large bridges. J. Bridge. Eng. 2024, 29, 04023101.
11. Peiris, A.; Sun, C.; Harik, I. Lessons learned from six different structural health monitoring systems on highway bridges. J. Low. Freq. Noise. Vib. Act. Control. 2020, 39, 616-30.
12. Zhang, J.; Qian, K.; Luo, H.; et al. Process monitoring for tower pumping units under variable operational conditions: from an integrated multitasking perspective. Control. Eng. Pract. 2025, 156, 106229.
13. Zhang, J.; Li, X.; Tian, J.; Jiang, Y.; Luo, H.; Yin, S. A variational local weighted deep sub-domain adaptation network for remaining useful life prediction facing cross-domain condition. Reliab. Eng. Syst. Safe. 2023, 231, 108986.
14. Hu, K.; Chen, Z.; Kang, H.; Tang, Y. 3D vision technologies for a self-developed structural external crack damage recognition robot. Automat. Constr. 2024, 159, 105262.
15. Wan, S.; Guan, S.; Tang, Y. Advancing bridge structural health monitoring: insights into knowledge-driven and data-driven approaches. J. Data. Sci. Intell. Syst. 2024, 2, 129-40.
16. Tang, Y.; Qi, S.; Zhu, L.; Zhuo, X.; Zhang, Y.; Meng, F. Obstacle avoidance motion in mobile robotics. J. Syst. Simul. 2024, 36, 1-26.
17. Ye, H.; Jiang, C.; Zu, F.; Li, S. Design of a structural health monitoring system and performance evaluation for a jacket offshore platform in East China Sea. Appl. Sci. 2022, 12, 12021.
18. Dal Cin, A.; Russo, S. Evaluation of static and dynamic long-term structural monitoring for monumental masonry structure. J. Civil. Struct. Health. Monit. 2019, 9, 169-82.
19. Janapati, V.; Kopsaftopoulos, F.; Li, F.; Lee, S. J.; Chang, F. Damage detection sensitivity characterization of acousto-ultrasound-based structural health monitoring techniques. Struct. Health. Monit. 2016, 15, 143-61.
20. Li, L.; Liu, G.; Zhang, L.; Li, Q. Sensor fault detection with generalized likelihood ratio and correlation coefficient for bridge SHM. J. Sound. Vib. 2019, 442, 445-58.
21. Fan, Z.; Huang, Q.; Ren, Y.; Ye, Q.; Chang, W.; Wang, Y. Cointegration based modeling and anomaly detection approaches using monitoring data of a suspension bridge. Smart. Struct. Syst. 2023, 31, 183-97.
22. Li, S.; Jin, L.; Qiu, Y.; Zhang, M.; Wang, J. Signal anomaly detection of bridge SHM system based on two-stage deep convolutional neural networks. Struct. Eng. Int. 2023, 33, 74-83.
23. Xin, J.; Wang, C.; Tang, Q.; Zhang, R.; Yang, T. An evaluation framework for construction quality of bridge monitoring system using the DHGF method. Sensors 2023, 23, 7139.
24. Azizi, M.; Hossein Zadeh, O.; Hajjarian, M. . Theory and applications of the analytic network process: decision making with benefits, opportunities, costs, and risks (Translated to Persian). University of Tehran Press; 2015. https://www.researchgate.net/publication/359494836_Theory_and_Applications_of_the_Analytic_Network_Process_Decision_Making_with_Benefits_Opportunities_Costs_and_Risks_Translated_to_Persianfarsy. (accessed 18 Apr 2025).
25. Liao, H.; Mi, X.; Xu, Z.; Xu, J.; Herrera, F. Intuitionistic fuzzy analytic network process. IEEE. Trans. Fuzzy. Syst. 2018, 26, 2578-90.
26. Zhang, Y.; Wang, S.; Liu, J.; Liu, D.; Li, T.; Wu, W. A corrosion assessment methodology based on triangular intuitionistic fuzzy comprehensive evaluation (TIFCE) with analytic network process (TIFANP): an application to external corrosion of the storage tank floor. Expert. Syst. Appl. 2024, 238, 121896.
28. Sahin, B.; Soylu, A. Intuitionistic fuzzy analytical network process models for maritime supply chain. Appl. Soft. Comput. 2020, 96, 106614.
29. Li, D. A note on “using intuitionistic fuzzy sets for fault-tree analysis on printed circuit board assembly”. Microelectron. Reliab. 2008, 48, 1741.
30. Du, Y.; Wang, S.; Wang, Y. Group fuzzy comprehensive evaluation method under ignorance. Expert. Syst. Appl. 2019, 126, 92-111.
31. Pei, Z.; Zheng, L. A novel approach to multi-attribute decision making based on intuitionistic fuzzy sets. Expert. Syst. Appl. 2012, 39, 2560-6.
32. Sun, G.; Guan, X.; Yi, X.; Zhou, Z. Improvements on correlation coefficients of hesitant fuzzy sets and their applications. Cogn. Comput. 2019, 11, 529-44.
33. Bień, J.; Kużawa, M.; Kamiński, T. Strategies and tools for the monitoring of concrete bridges. Struct. Concr. 2020, 21, 1227-39.
34. Paul, D.; Roy, K. Application of bridge weigh-in-motion system in bridge health monitoring: a state-of-the-art review. Struct. Health. Monit. 2023, 22, 4194-232.
35. Zinno, R.; Haghshenas, S. S.; Guido, G.; Vitale, A. Artificial intelligence and structural health monitoring of bridges: a review of the state-of-the-art. IEEE. Access. 2022, 10, 88058-78.
36. López-Aragón, J.; Astiz, M. Some considerations about the incorporation of dynamic parameters in the structural health monitoring systems of bridges. Appl. Sci. 2024, 14, 33.