1. Bah, I.; Xue, Y. Facial expression recognition using adapted residual based deep neural network. Intell. Robot. 2022, 2, 72-88.
2. Suguitan, M.; Depalma, N.; Hoffman, G.; Hodgins, J. Face2Gesture: translating facial expressions into robot movements through shared latent space neural networks. ACM. Trans. Hum. Robot. Interact. 2024, 13, 1-18.
3. Ekman, P.; Friesen, W. V. Constants across cultures in the face and emotion. J. Pers. Soc. Psychol. 1971, 17, 124.
4. Lucey, P.; Cohn, J. F.; Kanade, T.; Saragih, J.; Ambadar, Z.; Matthews, I. The extended Cohn-Kanade Dataset (CK+): a complete dataset for action unit and emotion-specified expression. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops, San Francisco, USA. Jun 13-18, 2010. IEEE, 2010; pp. 94–101.
5. Lyons, M.; Akamatsu, S.; Kamachi, M.; Gyoba, J. Coding facial expressions with Gabor wavelets. In: Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition, Nara, Japan. Apr 14-16, 1998. IEEE, 1998; pp. 200–5.
6. Zhao, G.; Huang, X.; Taini, M.; Li, S. Z.; Pietikäinen, M. Facial expression recognition from near-infrared videos. Image. Vis. Comput. 2011, 29, 607-19.
7. Li, S.; Deng, W.; Du, J. Reliable crowdsourcing and deep locality-preserving learning for expression recognition in the wild. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA. Jul 21-26, 2017. IEEE, 2017; pp. 2584-93.
8. Dhall, A.; Goecke, R.; Lucey, S.; Gedeon, T. Collecting large, richly annotated facial-expression databases from movies. IEEE. MultiMedia. 2012, 19, 34-41.
9. Barsoum, E.; Zhang, C.; Ferrer, C. C.; Zhang, Z. Training deep networks for facial expression recognition with crowd-sourced label distribution. In: Proceedings of the 18th ACM International Conference on Multimodal Interaction. Association for Computing Machinery, 2016; pp. 279–83.
10. Mollahosseini, A.; Chan, D.; Mahoor, M. H. Going deeper in facial expression recognition using deep neural networks. In: 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Placid, USA. Mar 07-10, 2016. IEEE, 2016; pp. 1–10.
11. Shao, J.; Qian, Y. Three convolutional neural network models for facial expression recognition in the wild. Neurocomputing 2019, 355, 82-92.
12. Gursesli, M. C.; Lombardi, S.; Duradoni, M.; Bocchi, L.; Guazzini, A.; Lanata, A. Facial emotion recognition (FER) through custom lightweight CNN model: performance evaluation in public datasets. IEEE. Access. 2024, 12, 45543-59.
13. Sun, M.; Cui, W.; Zhang, Y.; Yu, S.; Liao, X.; Hu, B. Attention-rectified and texture-enhanced cross-attention transformer feature fusion network for facial expression recognition. IEEE. Trans. Ind. Informat. 2023, 19, 11823-32.
14. Tao, H.; Duan, Q. Hierarchical attention network with progressive feature fusion for facial expression recognition. Neural. Netw. 2024, 170, 337-48.
15. Liu, H.; Cai, H.; Lin, Q.; Li, X.; Xiao, H. Adaptive multilayer perceptual attention network for facial expression recognition. IEEE. Trans. Circuits. Syst. Video. Technol. 2022, 32, 6253-66.
16. Zhao, R.; Liu, T.; Huang, Z.; Lun, D. P.; Lam, K. M. Spatial-temporal graphs plus transformers for geometry-guided facial expression recognition. IEEE. Trans. Affect. Comput. 2023, 14, 2751-67.
17. Shan, C.; Gong, S.; McOwan, P. W. Facial expression recognition based on local binary patterns: a comprehensive study. Image. Vis. Comput. 2009, 27, 803-16.
18. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), San Diego, USA. Jun 20-25, 2005. IEEE, 2005; pp. 886–93.
19. Cordea, M. D.; Petriu, E. M.; Petriu, D. C. Three-dimensional head tracking and facial expression recovery using an anthropometric muscle-based active appearance model. IEEE. Trans. Instrum. Meas. 2008, 57, 1578-88.
20. Xu, Z.; Wu, H. R.; Yu, X.; Horadam, K.; Qiu, B. Robust shape-feature-vector-based face recognition system. IEEE. Trans. Instrum. Meas. 2011, 60, 3781-91.
21. Ghimire, D.; Jeong, S.; Lee, J.; Park, S. H. Facial expression recognition based on local region specific features and support vector machines. Multimed. Tools. Appl. 2017, 76, 7803-21.
22. Krizhevsky, A.; Sutskever, I.; Hinton, G. E. ImageNet classification with deep convolutional neural networks. Commun. ACM. 2017, 60, 84-90.
23. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv2014, arXiv: 1409.1556. Available online: http://arxiv.org/abs/1409.1556. (accessed on 24 Mar 2025).
24. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA. Jun 27-30, 2016. IEEE, 2016; pp. 770–8.
25. Wu, X.; He, J.; Huang, Q.; et al. FER-CHC: facial expression recognition with cross-hierarchy contrast. Appl. Soft. Comput. 2023, 145, 110530.
26. Teng, J.; Zhang, D.; Zou, W.; Li, M.; Lee, D. Typical facial expression network using a facial feature decoupler and spatial-temporal learning. IEEE. Trans. Affect. Comput. 2023, 14, 1125-37.
27. Zhao, R.; Liu, T.; Huang, Z.; Lun, D. P.; Lam, K. M. Geometry-aware facial expression recognition via attentive graph convolutional networks. IEEE. Trans. Affect. Comput. 2023, 14, 1159-74.
28. Cai, J.; Meng, Z.; Khan, A.; Li, Z.; O'Reilly, J.; Tong, Y. Probabilistic attribute tree structured convolutional neural networks for facial expression recognition in the wild. IEEE. Trans. Affect. Comput. 2023, 14, 1927-41.
29. Liu, T.; Li, J.; Wu, J.; Du, B.; Chang, J.; Liu, Y. Facial expression recognition on the high aggregation subgraphs. IEEE. Trans. Image. Process. 2023, 32, 3732-45.
30. Zhang, F.; Chen, G.; Wang, H.; Zhang, C. CF-DAN: facial-expression recognition based on cross-fusion dual-attention network. Comput. Vis. Media. 2024, 10, 593-608.
31. Li, Y.; Lu, G.; Li, J.; Zhang, Z.; Zhang, D. Facial expression recognition in the wild using multi-level features and attention mechanisms. IEEE. Trans. Affect. Comput. 2023, 14, 451-62.
32. Zhang, X.; Zhu, J.; Wang, D.; et al. A gradual self distillation network with adaptive channel attention for facial expression recognition. Appl. Soft. Comput. 2024, 161, 111762.
33. Chen, D.; Wen, G.; Li, H.; Chen, R.; Li, C. Multi-relations aware network for in-the-wild facial expression recognition. IEEE. Trans. Circuits. Syst. Video. Technol. 2023, 33, 3848-59.
35. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; et al. An image is worth 16x16 words: transformers for image recognition at scale. arXiv2020, arXiv: 2010.11929. Available online: https://arxiv.org/abs/2010.11929. (accessed on 24 Mar 2025).
36. Li, Y.; Miao, N.; Ma, L.; Shuang, F.; Huang, X. Transformer for object detection: review and benchmark. Eng. Appl. Artif. Intell. 2023, 126, 107021.
37. Chen, X.; Yan, B.; Zhu, J.; Wang, D.; Yang, X.; Lu, H. Transformer tracking. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, USA. Jun 20-25, 2021. IEEE, 2021; pp. 8122-31.
38. Wang, Y.; Xu, Z.; Wang, X.; et al. End-to-end video instance segmentation with transformers. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, USA. Jun 20-25, 2021. IEEE, 2021; pp. 8737-46.
39. Ma, F.; Sun, B.; Li, S. Transformer-augmented network with online label correction for facial expression recognition. IEEE. Trans. Affect. Comput. 2024, 15, 593-605.
40. Zhang, X.; Li, M.; Lin, S.; Xu, H.; Xiao, G. Transformer-based multimodal emotional perception for dynamic facial expression recognition in the wild. IEEE. Trans. Circuits. Syst. Video. Technol. 2024, 34, 3192-203.
41. Liu, C.; Hirota, K.; Dai, Y. Patch attention convolutional vision transformer for facial expression recognition with occlusion. Inf. Sci. 2023, 619, 781-94.
42. Gao, S. H.; Cheng, M. M.; Zhao, K.; Zhang, X. Y.; Yang, M. H.; Torr, P. Res2Net: a new multi-scale backbone architecture. IEEE. Trans. Pattern. Anal. Mach. Intell. 2021, 43, 652-62.
43. Chen, Q.; Wu, Q.; Wang, J.; Hu, Q.; Hu, T.; Ding, E. MixFormer: mixing features across windows and dimensions. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, USA. Jun 18-24, 2022. IEEE, 2022; pp. 5249–59.
44. Goodfellow, I. J.; Erhan, D.; Carrier, P. L.; et al. Challenges in representation learning: a report on three machine learning contests. In: Neural Information Processing. ICONIP 2013, Berlin, Heidelberg. Springer Berlin Heidelberg. 2013; pp. 117–24.
45. Wang, K.; Peng, X.; Yang, J.; Meng, D.; Qiao, Y. Region attention networks for pose and occlusion robust facial expression recognition. IEEE. Trans. Image. Process. 2020, 29, 4057-69.
46. Zhang, K.; Zhang, Z.; Li, Z.; Qiao, Y. Joint face detection and alignment using multitask cascaded convolutional networks. IEEE. Signal. Process. Lett. 2016, 23, 1499-503.
47. Guo, Y.; Zhang, L.; Hu, Y.; He, X.; Gao, J. MS-Celeb-1M: a dataset and benchmark for large-scale face recognition. In: Leibe B, Matas J, Sebe N, Welling M, editors. Computer Vision ECCV. Cham: Springer International Publishing, 2016; pp. 87–102.
48. Wang, K.; Peng, X.; Yang, J.; Lu, S.; Qiao, Y. Suppressing uncertainties for large-scale facial expression recognition. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA. Jun 13-19, 2020. IEEE, 2020; pp. 6897–906.
49. Li, Y.; Zeng, J.; Shan, S.; Chen, X. Occlusion aware facial expression recognition using CNN with attention mechanism. IEEE. Trans. Image. Process. 2019, 28, 2439-50.
50. Ding, H.; Zhou, P.; Chellappa, R. Occlusion-adaptive deep network for robust facial expression recognition. In: 2020 IEEE International Joint Conference on Biometrics (IJCB), Houston, USA. Sep 28 - Oct 01, 2020. IEEE, 2020; p. 1-9.
51. Farzaneh, A. H.; Qi, X. Facial expression recognition in the wild via deep attentive center loss. In: 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa, USA. Jan 03-08, 2021. IEEE, 2021; pp. 2401-10.
52. Zhao, Z.; Liu, Q.; Wang, S. Learning deep global multi-scale and local attention features for facial expression recognition in the wild. IEEE. Trans. Image. Process. 2021, 30, 6544-56.
53. Ruan, D.; Yan, Y.; Lai, S.; Chai, Z.; Shen, C.; Wang, H. Feature decomposition and reconstruction learning for effective facial expression recognition. arXiv2021, arXiv: 2104.05160. Available online: https://doi.org/10.48550/arXiv.2104.05160. (accessed on 24 Mar 2025).
54. Ma, F.; Sun, B.; Li, S. Facial expression recognition with visual transformers and attentional selective fusion. IEEE. Trans. Affect. Comput. 2023, 14, 1236-48.
55. Ruan, D.; Mo, R.; Yan, Y.; Chen, S.; Xue, J. H.; Wang, H. Adaptive deep disturbance-disentangled learning for facial expression recognition. Int. J. Comput. Vis. 2022, 130, 455-77.
56. Lv, Z. Facial expression recognition method based on dual-branch fusion network with noisy labels. In: 2024 IEEE 7th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China. Mar 15-17, 2024. IEEE, 2024; pp. 1608–12.
57. Miao, S.; Xu, H.; Han, Z.; Zhu, Y. Recognizing facial expressions using a shallow convolutional neural network. IEEE. Access. 2019, 7, 78000-11.
58. Xie, W.; Shen, L.; Duan, J. Adaptive weighting of handcrafted feature losses for facial expression recognition. IEEE. Trans. Cybern. 2021, 51, 2787-800.
59. Tang, Y.; Zhang, X.; Hu, X.; Wang, S.; Wang, H. Facial expression recognition using frequency neural network. IEEE. Trans. Image. Process. 2021, 30, 444-57.
60. Li, H.; Wang, N.; Yu, Y.; Yang, X.; Gao, X. LBAN-IL: a novel method of high discriminative representation for facial expression recognition. Neurocomputing 2021, 432, 159-69.
61. Huang, C. Combining convolutional neural networks for emotion recognition. In: 2017 IEEE MIT Undergraduate Research Technology Conference (URTC), Cambridge, USA. Nov 03-05, 2017. IEEE, 2017; p. 1-4.
62. Yalçin, N.; Alisawi, M. Introducing a novel dataset for facial emotion recognition and demonstrating significant enhancements in deep learning performance through pre-processing techniques. Heliyon 2024, 10, e38913.
63. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA. Jun 18-23, 2018. IEEE, 2018; pp. 7132-41.
64. Woo, S.; Park, J.; Lee, J. Y.; Kweon, I. S. CBAM: convolutional block attention module. In: Computer Vision - ECCV 2018. Springer, Cham; pp. 3-19.
65. Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: efficient channel attention for deep convolutional neural networks. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA. Jun 13-19, 2020. IEEE, 2020; pp. 11531–9.
66. Selvaraju, R. R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: visual explanations from deep networks via gradient-based localization. In: 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy. Oct 22-29, 2017. IEEE, 2017; pp. 618-26.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.