REFERENCES

1. Bah, I.; Xue, Y. Facial expression recognition using adapted residual based deep neural network. Intell. Robot. 2022, 2, 72-88.

2. Suguitan, M.; Depalma, N.; Hoffman, G.; Hodgins, J. Face2Gesture: translating facial expressions into robot movements through shared latent space neural networks. ACM. Trans. Hum. Robot. Interact. 2024, 13, 1-18.

3. Ekman, P.; Friesen, W. V. Constants across cultures in the face and emotion. J. Pers. Soc. Psychol. 1971, 17, 124.

4. Lucey, P.; Cohn, J. F.; Kanade, T.; Saragih, J.; Ambadar, Z.; Matthews, I. The extended Cohn-Kanade Dataset (CK+): a complete dataset for action unit and emotion-specified expression. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops, San Francisco, USA. Jun 13-18, 2010. IEEE, 2010; pp. 94–101.

5. Lyons, M.; Akamatsu, S.; Kamachi, M.; Gyoba, J. Coding facial expressions with Gabor wavelets. In: Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition, Nara, Japan. Apr 14-16, 1998. IEEE, 1998; pp. 200–5.

6. Zhao, G.; Huang, X.; Taini, M.; Li, S. Z.; Pietikäinen, M. Facial expression recognition from near-infrared videos. Image. Vis. Comput. 2011, 29, 607-19.

7. Li, S.; Deng, W.; Du, J. Reliable crowdsourcing and deep locality-preserving learning for expression recognition in the wild. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA. Jul 21-26, 2017. IEEE, 2017; pp. 2584-93.

8. Dhall, A.; Goecke, R.; Lucey, S.; Gedeon, T. Collecting large, richly annotated facial-expression databases from movies. IEEE. MultiMedia. 2012, 19, 34-41.

9. Barsoum, E.; Zhang, C.; Ferrer, C. C.; Zhang, Z. Training deep networks for facial expression recognition with crowd-sourced label distribution. In: Proceedings of the 18th ACM International Conference on Multimodal Interaction. Association for Computing Machinery, 2016; pp. 279–83.

10. Mollahosseini, A.; Chan, D.; Mahoor, M. H. Going deeper in facial expression recognition using deep neural networks. In: 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Placid, USA. Mar 07-10, 2016. IEEE, 2016; pp. 1–10.

11. Shao, J.; Qian, Y. Three convolutional neural network models for facial expression recognition in the wild. Neurocomputing 2019, 355, 82-92.

12. Gursesli, M. C.; Lombardi, S.; Duradoni, M.; Bocchi, L.; Guazzini, A.; Lanata, A. Facial emotion recognition (FER) through custom lightweight CNN model: performance evaluation in public datasets. IEEE. Access. 2024, 12, 45543-59.

13. Sun, M.; Cui, W.; Zhang, Y.; Yu, S.; Liao, X.; Hu, B. Attention-rectified and texture-enhanced cross-attention transformer feature fusion network for facial expression recognition. IEEE. Trans. Ind. Informat. 2023, 19, 11823-32.

14. Tao, H.; Duan, Q. Hierarchical attention network with progressive feature fusion for facial expression recognition. Neural. Netw. 2024, 170, 337-48.

15. Liu, H.; Cai, H.; Lin, Q.; Li, X.; Xiao, H. Adaptive multilayer perceptual attention network for facial expression recognition. IEEE. Trans. Circuits. Syst. Video. Technol. 2022, 32, 6253-66.

16. Zhao, R.; Liu, T.; Huang, Z.; Lun, D. P.; Lam, K. M. Spatial-temporal graphs plus transformers for geometry-guided facial expression recognition. IEEE. Trans. Affect. Comput. 2023, 14, 2751-67.

17. Shan, C.; Gong, S.; McOwan, P. W. Facial expression recognition based on local binary patterns: a comprehensive study. Image. Vis. Comput. 2009, 27, 803-16.

18. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), San Diego, USA. Jun 20-25, 2005. IEEE, 2005; pp. 886–93.

19. Cordea, M. D.; Petriu, E. M.; Petriu, D. C. Three-dimensional head tracking and facial expression recovery using an anthropometric muscle-based active appearance model. IEEE. Trans. Instrum. Meas. 2008, 57, 1578-88.

20. Xu, Z.; Wu, H. R.; Yu, X.; Horadam, K.; Qiu, B. Robust shape-feature-vector-based face recognition system. IEEE. Trans. Instrum. Meas. 2011, 60, 3781-91.

21. Ghimire, D.; Jeong, S.; Lee, J.; Park, S. H. Facial expression recognition based on local region specific features and support vector machines. Multimed. Tools. Appl. 2017, 76, 7803-21.

22. Krizhevsky, A.; Sutskever, I.; Hinton, G. E. ImageNet classification with deep convolutional neural networks. Commun. ACM. 2017, 60, 84-90.

23. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv2014, arXiv: 1409.1556. Available online: http://arxiv.org/abs/1409.1556. (accessed on 24 Mar 2025).

24. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA. Jun 27-30, 2016. IEEE, 2016; pp. 770–8.

25. Wu, X.; He, J.; Huang, Q.; et al. FER-CHC: facial expression recognition with cross-hierarchy contrast. Appl. Soft. Comput. 2023, 145, 110530.

26. Teng, J.; Zhang, D.; Zou, W.; Li, M.; Lee, D. Typical facial expression network using a facial feature decoupler and spatial-temporal learning. IEEE. Trans. Affect. Comput. 2023, 14, 1125-37.

27. Zhao, R.; Liu, T.; Huang, Z.; Lun, D. P.; Lam, K. M. Geometry-aware facial expression recognition via attentive graph convolutional networks. IEEE. Trans. Affect. Comput. 2023, 14, 1159-74.

28. Cai, J.; Meng, Z.; Khan, A.; Li, Z.; O'Reilly, J.; Tong, Y. Probabilistic attribute tree structured convolutional neural networks for facial expression recognition in the wild. IEEE. Trans. Affect. Comput. 2023, 14, 1927-41.

29. Liu, T.; Li, J.; Wu, J.; Du, B.; Chang, J.; Liu, Y. Facial expression recognition on the high aggregation subgraphs. IEEE. Trans. Image. Process. 2023, 32, 3732-45.

30. Zhang, F.; Chen, G.; Wang, H.; Zhang, C. CF-DAN: facial-expression recognition based on cross-fusion dual-attention network. Comput. Vis. Media. 2024, 10, 593-608.

31. Li, Y.; Lu, G.; Li, J.; Zhang, Z.; Zhang, D. Facial expression recognition in the wild using multi-level features and attention mechanisms. IEEE. Trans. Affect. Comput. 2023, 14, 451-62.

32. Zhang, X.; Zhu, J.; Wang, D.; et al. A gradual self distillation network with adaptive channel attention for facial expression recognition. Appl. Soft. Comput. 2024, 161, 111762.

33. Chen, D.; Wen, G.; Li, H.; Chen, R.; Li, C. Multi-relations aware network for in-the-wild facial expression recognition. IEEE. Trans. Circuits. Syst. Video. Technol. 2023, 33, 3848-59.

34. Vaswani, A.; Shazeer, N.; Parmar, N.; et al. Attention is all you need. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. NIPS'17, Red Hook, USA. Curran Associates Inc., 2017; pp. 6000–10. https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html. (accessed 2025-03-24).

35. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; et al. An image is worth 16x16 words: transformers for image recognition at scale. arXiv2020, arXiv: 2010.11929. Available online: https://arxiv.org/abs/2010.11929. (accessed on 24 Mar 2025).

36. Li, Y.; Miao, N.; Ma, L.; Shuang, F.; Huang, X. Transformer for object detection: review and benchmark. Eng. Appl. Artif. Intell. 2023, 126, 107021.

37. Chen, X.; Yan, B.; Zhu, J.; Wang, D.; Yang, X.; Lu, H. Transformer tracking. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, USA. Jun 20-25, 2021. IEEE, 2021; pp. 8122-31.

38. Wang, Y.; Xu, Z.; Wang, X.; et al. End-to-end video instance segmentation with transformers. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, USA. Jun 20-25, 2021. IEEE, 2021; pp. 8737-46.

39. Ma, F.; Sun, B.; Li, S. Transformer-augmented network with online label correction for facial expression recognition. IEEE. Trans. Affect. Comput. 2024, 15, 593-605.

40. Zhang, X.; Li, M.; Lin, S.; Xu, H.; Xiao, G. Transformer-based multimodal emotional perception for dynamic facial expression recognition in the wild. IEEE. Trans. Circuits. Syst. Video. Technol. 2024, 34, 3192-203.

41. Liu, C.; Hirota, K.; Dai, Y. Patch attention convolutional vision transformer for facial expression recognition with occlusion. Inf. Sci. 2023, 619, 781-94.

42. Gao, S. H.; Cheng, M. M.; Zhao, K.; Zhang, X. Y.; Yang, M. H.; Torr, P. Res2Net: a new multi-scale backbone architecture. IEEE. Trans. Pattern. Anal. Mach. Intell. 2021, 43, 652-62.

43. Chen, Q.; Wu, Q.; Wang, J.; Hu, Q.; Hu, T.; Ding, E. MixFormer: mixing features across windows and dimensions. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, USA. Jun 18-24, 2022. IEEE, 2022; pp. 5249–59.

44. Goodfellow, I. J.; Erhan, D.; Carrier, P. L.; et al. Challenges in representation learning: a report on three machine learning contests. In: Neural Information Processing. ICONIP 2013, Berlin, Heidelberg. Springer Berlin Heidelberg. 2013; pp. 117–24.

45. Wang, K.; Peng, X.; Yang, J.; Meng, D.; Qiao, Y. Region attention networks for pose and occlusion robust facial expression recognition. IEEE. Trans. Image. Process. 2020, 29, 4057-69.

46. Zhang, K.; Zhang, Z.; Li, Z.; Qiao, Y. Joint face detection and alignment using multitask cascaded convolutional networks. IEEE. Signal. Process. Lett. 2016, 23, 1499-503.

47. Guo, Y.; Zhang, L.; Hu, Y.; He, X.; Gao, J. MS-Celeb-1M: a dataset and benchmark for large-scale face recognition. In: Leibe B, Matas J, Sebe N, Welling M, editors. Computer Vision ECCV. Cham: Springer International Publishing, 2016; pp. 87–102.

48. Wang, K.; Peng, X.; Yang, J.; Lu, S.; Qiao, Y. Suppressing uncertainties for large-scale facial expression recognition. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA. Jun 13-19, 2020. IEEE, 2020; pp. 6897–906.

49. Li, Y.; Zeng, J.; Shan, S.; Chen, X. Occlusion aware facial expression recognition using CNN with attention mechanism. IEEE. Trans. Image. Process. 2019, 28, 2439-50.

50. Ding, H.; Zhou, P.; Chellappa, R. Occlusion-adaptive deep network for robust facial expression recognition. In: 2020 IEEE International Joint Conference on Biometrics (IJCB), Houston, USA. Sep 28 - Oct 01, 2020. IEEE, 2020; p. 1-9.

51. Farzaneh, A. H.; Qi, X. Facial expression recognition in the wild via deep attentive center loss. In: 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa, USA. Jan 03-08, 2021. IEEE, 2021; pp. 2401-10.

52. Zhao, Z.; Liu, Q.; Wang, S. Learning deep global multi-scale and local attention features for facial expression recognition in the wild. IEEE. Trans. Image. Process. 2021, 30, 6544-56.

53. Ruan, D.; Yan, Y.; Lai, S.; Chai, Z.; Shen, C.; Wang, H. Feature decomposition and reconstruction learning for effective facial expression recognition. arXiv2021, arXiv: 2104.05160. Available online: https://doi.org/10.48550/arXiv.2104.05160. (accessed on 24 Mar 2025).

54. Ma, F.; Sun, B.; Li, S. Facial expression recognition with visual transformers and attentional selective fusion. IEEE. Trans. Affect. Comput. 2023, 14, 1236-48.

55. Ruan, D.; Mo, R.; Yan, Y.; Chen, S.; Xue, J. H.; Wang, H. Adaptive deep disturbance-disentangled learning for facial expression recognition. Int. J. Comput. Vis. 2022, 130, 455-77.

56. Lv, Z. Facial expression recognition method based on dual-branch fusion network with noisy labels. In: 2024 IEEE 7th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China. Mar 15-17, 2024. IEEE, 2024; pp. 1608–12.

57. Miao, S.; Xu, H.; Han, Z.; Zhu, Y. Recognizing facial expressions using a shallow convolutional neural network. IEEE. Access. 2019, 7, 78000-11.

58. Xie, W.; Shen, L.; Duan, J. Adaptive weighting of handcrafted feature losses for facial expression recognition. IEEE. Trans. Cybern. 2021, 51, 2787-800.

59. Tang, Y.; Zhang, X.; Hu, X.; Wang, S.; Wang, H. Facial expression recognition using frequency neural network. IEEE. Trans. Image. Process. 2021, 30, 444-57.

60. Li, H.; Wang, N.; Yu, Y.; Yang, X.; Gao, X. LBAN-IL: a novel method of high discriminative representation for facial expression recognition. Neurocomputing 2021, 432, 159-69.

61. Huang, C. Combining convolutional neural networks for emotion recognition. In: 2017 IEEE MIT Undergraduate Research Technology Conference (URTC), Cambridge, USA. Nov 03-05, 2017. IEEE, 2017; p. 1-4.

62. Yalçin, N.; Alisawi, M. Introducing a novel dataset for facial emotion recognition and demonstrating significant enhancements in deep learning performance through pre-processing techniques. Heliyon 2024, 10, e38913.

63. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA. Jun 18-23, 2018. IEEE, 2018; pp. 7132-41.

64. Woo, S.; Park, J.; Lee, J. Y.; Kweon, I. S. CBAM: convolutional block attention module. In: Computer Vision - ECCV 2018. Springer, Cham; pp. 3-19.

65. Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: efficient channel attention for deep convolutional neural networks. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA. Jun 13-19, 2020. IEEE, 2020; pp. 11531–9.

66. Selvaraju, R. R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: visual explanations from deep networks via gradient-based localization. In: 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy. Oct 22-29, 2017. IEEE, 2017; pp. 618-26.

Intelligence & Robotics
ISSN 2770-3541 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/