REFERENCES

1. Xu, Y.; Arai, S.; Liu, D.; Lin, F.; Kosuge, K. FPCC: fast point cloud clustering-based instance segmentation for industrial bin-picking. Neurocomputing 2022, 494, 255-68.

2. Wang, H.; Chen, Y.; Cai, Y.; et al. SFNet-N: an improved SFNet algorithm for semantic segmentation of low-light autonomous driving road scenes. IEEE. Trans. Intell. Transport. Syst. 2022, 23, 21405-17.

3. Wang, J.; Li, G.; Zhou, Y.; et al. A pixel-wise segmentation method for automatic X-ray image detection of chip packaging defects. IEEE. Trans. Compon. Packag. Manufact. Technol. 2024, 14, 1520-7.

4. Li, Z.; Liu, X. Soldering defect segmentation method for PCB on improved UNet. Appl. Sci. 2024, 14, 7370.

5. Choi, S. H.; Park, K.; Roh, D. H.; et al. An integrated mixed reality system for safety-aware human-robot collaboration using deep learning and digital twin generation. Robotics. Comput. Integr. Manuf. 2022, 73, 102258.

6. Guo, A.; Wang, Y.; Guo, L.; Zhang, R.; Yu, Y.; Gao, S. An adaptive position-guided gravitational search algorithm for function optimization and image threshold segmentation. Eng. Appl. Artif. Intell. 2023, 121, 106040.

7. Qiao, Z.; Zhang, Q. Two-phase image segmentation by the Allen-Cahn Equation and a nonlocal edge detection operator. NMTMA. 2022, 15, 1147-72.

8. Zerweck, L.; Wesarg, S.; Kohlhammer, J.; Köhm, M. Combining seeded region growing and k-nearest neighbours for the segmentation of routinely acquired spatio-temporal image data. Int. J. Comput. Assist. Radiol. Surg. 2023, 18, 2063-72.

9. Weng, G.; Dong, B.; Lei, Y. A level set method based on additive bias correction for image segmentation. Expert. Syst. Appl. 2021, 185, 115633.

10. Byrne, N.; Clough, J. R.; Valverde, I.; Montana, G.; King, A. P. A persistent homology-based topological loss for CNN-based multiclass segmentation of CMR. IEEE. Trans. Med. Imaging. 2023, 42, 3-14.

11. Shan, D.; Zhang, Y.; Coleman, S.; Kerr, D.; Liu, S.; Hu, Z. Unseen-material few-shot defect segmentation with optimal bilateral feature transport network. IEEE. Trans. Ind. Inf. 2023, 19, 8072-82.

12. Sekar, A.; Perumal, V. SS-GAN based road surface crack region segmentation and forecasting. Eng. Appl. Artif. Intell. 2024, 133, 108300.

13. Li, J.; Chen, N.; Zhou, H.; et al. MCRformer: morphological constraint reticular transformer for 3D medical image segmentation. Expert. Syst. Appl. 2023, 232, 120877.

14. Chen, Y.; Li, Y.; Cheng, C.; Ying, H. Neural network based cognitive approaches from face perception with human performance benchmark. Pattern. Recogn. Lett. 2024, 184, 155-61.

15. Pei, C.; Wu, F.; Yang, M.; et al. Multi-source domain adaptation for medical image segmentation. IEEE. Trans. Med. Imaging. 2024, 43, 1640-51.

16. Wang, X.; Liu, J.; Wang, W.; Chi, W.; Feng, R. Weakly supervised hyperspectral image classification with few samples based on intradomain sample expansion. IEEE. J. Sel. Top. Appl. Earth. Obs. Remote. Sens. 2023, 16, 5769-81.

17. Yin, Y.; Luo, S.; Zhou, J.; Kang, L.; Chen, C. Y. LDCNet: lightweight dynamic convolution network for laparoscopic procedures image segmentation. Neural. Netw. 2024, 170, 441-52.

18. Peng, S.; Jiang, W.; Pi, H.; Li, X.; Bao, H.; Zhou, X. Deep snake for real-time instance segmentation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, Seattle, USA, Jun 13-19 2020; IEEE, 2020; pp. 8533-42.

19. Kass, M.; Witkin, A.; Terzopoulos, D. Snakes: active contour models. Int. J. Comput. Vision. 1988, 1, 321-31.

20. Yin, P.; Xu, Y.; Zhu, J.; et al. Deep level set learning for optic disc and cup segmentation. Neurocomputing 2021, 464, 330-41.

21. Bhandari, A. K.; Singh, A.; Kumar, I. V. Spatial context energy curve-based multilevel 3-D Otsu algorithm for image segmentation. IEEE. Trans. Syst. Man. Cybern. Syst. 2021, 51, 2760-73.

22. Ma, G.; Yue, X. An improved whale optimization algorithm based on multilevel threshold image segmentation using the Otsu method. Eng. Appl. Artif. Intell. 2022, 113, 104960.

23. Yu, Y.; Bao, Y.; Wang, J.; et al. Crop row segmentation and detection in paddy fields based on treble-classification Otsu and double-dimensional clustering method. Remote. Sens. 2021, 13, 901.

24. Beucher, S. Use of watersheds in contour detection. 1979. https://cir.nii.ac.jp/crid/1572261550878454016. (accessed 2025-02-18).

25. Tian, X.; Liu, X.; He, X.; Zhang, C.; Li, J.; Huang, W. Detection of early bruises on apples using hyperspectral reflectance imaging coupled with optimal wavelengths selection and improved watershed segmentation algorithm. J. Sci. Food. Agric. 2023, 103, 6689-705.

26. Peng, C.; Liu, Y.; Gui, W.; Tang, Z.; Chen, Q. Bubble image segmentation based on a novel watershed algorithm with an optimized mark and edge constraint. IEEE. Trans. Instrum. Meas. 2022, 71, 1-10.

27. Gonzalez, R. C.; Wintz, P. Digital image processing, 2nd ed. Prentice Hall, 2002. https://dl.acm.org/doi/abs/10.5555/22881. (accessed 2025-02-18).

28. Kadapala, B. K. R.; K, A. H. Region-growing-based automatic localized adaptive thresholding algorithm for water extraction using sentinel-2 MSI imagery. IEEE. Trans. Geosci. Remote. Sens. 2023, 61, 1-8.

29. Zhang, W.; Zhou, F.; Wang, L.; Sun, P. Region growing based on 2-D–3-D mutual projections for visible point cloud segmentation. IEEE. Trans. Instrum. Meas. 2021, 70, 1-13.

30. Lang, Y.; Zheng, D. An improved sobel edge detection operator. In Proceedings of the 2016 6th International Conference on Mechatronics, Computer and Education Informationization (MCEI 2016). Atlantis Press; 2016; pp. 590-3.

31. Yang, L.; Wu, X.; Zhao, D.; Li, H.; Zhai, J. An improved prewitt algorithm for edge detection based on noised image. In 2011 4th International Congress on Image and Signal Processing, Shanghai, China, Oct 15-17 2011; IEEE, 2011, pp. 1197-200.

32. Ghodrati, S.; Mohseni, M.; Gorji Kandi, S. Application of image edge detection methods for precise estimation of the standard surface roughness parameters: polypropylene/ethylene-propylene-diene-monomer blend as a case study. Measurement 2019, 138, 80-90.

33. Xu, D.; Zhao, Y.; Jiang, Y.; Zhang, C.; Sun, B.; He, X. Using improved edge detection method to detect mining-induced ground fissures identified by unmanned aerial vehicle remote sensing. Remote. Sens. 2021, 13, 3652.

34. Lu, Y.; Duanmu, L.; Zhai, Z.; Wang, Z. Application and improvement of Canny edge-detection algorithm for exterior wall hollowing detection using infrared thermal images. Energy. Build. 2022, 274, 112421.

35. Zhang, X.; Fang, T.; Saniie, J.; Bakhtiari, S.; Heifetz, A. Unsupervised learning-enabled pulsed infrared thermographic microscopy of subsurface defects in stainless steel. Sci. Rep. 2024, 14, 14865.

36. Chen, Y.; Wang, Z.; Bai, X. Fuzzy sparse subspace clustering for infrared image segmentation. IEEE. Trans. Image. Process. 2023, 32, 2132-46.

37. Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE. Trans. Pattern. Anal. Mach. Intell. 2012, 34, 2274-82.

38. Kishorjit Singh, N.; Johny Singh, N.; Kanan Kumar, W. Image classification using SLIC superpixel and FAAGKFCM image segmentation. IET. Image. Process. 2020, 14, 487-94.

39. Fukunaga, K.; Hostetler, L. The estimation of the gradient of a density function, with applications in pattern recognition. IEEE. Trans. Inform. Theory. 1975, 21, 32-40.

40. Ranjbarzadeh, R.; Saadi, S. B. Automated liver and tumor segmentation based on concave and convex points using fuzzy c-means and mean shift clustering. Measurement 2020, 150, 107086.

41. Qiu, Z.; Ma, Y.; Fan, F.; Huang, J.; Wu, L.; Du, Y. Improved DBSCAN for infrared cluster small target detection. IEEE. Geosci. Remote. Sensing. Lett. 2023, 20, 1-5.

42. Tang, K.; Zhou, X. Evolution algorithm of parametric active contour model based on Gaussian smoothing filter. Mach. Vision. Appl. 2022, 33, 1336.

43. Pramanik, S.; Banik, D.; Bhattacharjee, D.; Nasipuri, M.; Bhowmik, M. K.; Majumdar, G. Suspicious-region segmentation from breast thermogram using DLPE-based level set method. IEEE. Trans. Med. Imaging. 2019, 38, 572-84.

44. Chen, Y.; Wu, L.; Wang, G.; He, H.; Weng, G.; Chen, H. An active contour model for image segmentation using morphology and nonlinear Poisson's equation. Optik 2023, 287, 170997.

45. Xu, C.; Prince, J. L. Gradient vector flow: a new external force for snakes. In Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Juan, USA, Jun 17-19 1997; IEEE, 1997; pp. 66-71.

46. Chen, Y.; Ge, P.; Wang, G.; Weng, G.; Chen, H. An overview of intelligent image segmentation using active contour models. Intell. Robot. 2023, 3, 23-55.

47. Cai, Q.; Qian, Y.; Zhou, S.; et al. AVLSM: adaptive variational level set model for image segmentation in the presence of severe intensity inhomogeneity and high noise. IEEE. Trans. Image. Process. 2022, 31, 43-57.

48. Wang, G.; Li, Z.; Weng, G.; Chen, Y. An optimized denoised bias correction model with local pre-fitting function for weak boundary image segmentation. Sign. Process. 2024, 220, 109448.

49. Yun, X.; Zhang, X.; Wang, Y.; et al. Automated layer identification and segmentation of x‐ray computer tomography imaged PCBs. X-Ray. Spectrom. 2024, 53, 315-25.

50. Osher, S.; Sethian, J. A. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 1988, 79, 12-49.

51. Caselles, V.; Kimmel, R.; Sapiro, G. Geodesic active contours. Int. J. Comput. Vis. 1997, 22, 61-79.

52. Mumford, D.; Shah, J. Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure. Appl. Math. 1989, 42, 577-685.

53. Chan, T. F.; Vese, L. A. Active contours without edges. IEEE. Trans. Image. Process. 2001, 10, 266-77.

54. Ma, P.; Yuan, H.; Chen, Y.; Chen, H.; Weng, G.; Liu, Y. A Laplace operator-based active contour model with improved image edge detection performance. Digit. Signal. Process. 2024, 151, 104550.

55. Ge, P.; Chen, Y.; Wang, G.; Weng, G. An active contour model based on Jeffreys divergence and clustering technology for image segmentation. J. Vis. Commun. Image. R. 2024, 99, 104069.

56. Peng, Y.; Liu, F.; Liu, S. A normalized local binary fitting model for image segmentation. In 2012 Fourth International Conference on Intelligent Networking and Collaborative Systems, Bucharest, Romania, Sep 19-21, 2012; IEEE, 2012; pp. 77-80,.

57. Yang, C.; Weng, G.; Chen, Y. Active contour model based on local Kullback–Leibler divergence for fast image segmentation. Eng. Appl. Artif. Intell. 2023, 123, 106472.

58. Li, C.; Huang, R.; Ding, Z.; Gatenby, J. C.; Metaxas, D. N.; Gore, J. C. A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE. Trans. Image. Process. 2011, 20, 2007-16.

59. Wang, G.; Zhang, F.; Chen, Y.; Weng, G.; Chen, H. An active contour model based on local pre-piecewise fitting bias corrections for fast and accurate segmentation. IEEE. Trans. Instrum. Meas. 2023, 72, 1-13.

60. Rother, C.; Kolmogorov, V.; Blake, A. "GrabCut": interactive foreground extraction using iterated graph cuts. ACM. Trans. Graph. 2004, 23, 309-14.

61. Felzenszwalb, P. F.; Huttenlocher, D. P. Efficient graph-based image segmentation. Int. J. Comput. Vis. 2004, 59, 167-81.

62. Morlet, J. Sampling theory and wave propagation. In Issues in acoustic Signal - image processing and recognition. Springer, 1983, pp. 233-61.

63. Bi, H.; Xu, L.; Cao, X.; Xue, Y.; Xu, Z. Polarimetric SAR image semantic segmentation with 3D discrete wavelet transform and markov random field. IEEE. Trans. Image. Process. 2020, 29, 6601-14.

64. Gao, J.; Wang, B.; Wang, Z.; Wang, Y.; Kong, F. A wavelet transform-based image segmentation method. Optik 2020, 208, 164123.

65. Wang, S.; Pan, Y.; Chen, M.; Zhang, Y.; Wu, X. FCN-SFW: steel structure crack segmentation using a fully convolutional network and structured forests. IEEE. Access. 2020, 8, 214358-73.

66. Chen, H.; Sun, K.; Tian, Z.; Shen, C.; Huang, Y.; Yan, Y. Blendmask: top-down meets bottom-up for instance segmentation. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, Jun 13-19, 2020; IEEE, 2020; pp. 8573-81.

67. Wang, X.; Kong, T.; Shen, C.; Jiang, Y.; Li, L. Solo: segmenting objects by locations. In ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020; pp. 649-65.

68. Xie, E.; Sun, P.; Song, X.; et al. Polarmask: single shot instance segmentation with polar representation. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, Jun 13-19, 2020; IEEE, 2020; pp. 12190-9.

69. Tian, Z.; Shen, C.; Chen, H. Conditional convolutions for instance segmentation. In Computer Vision - ECCV 2020: 16th European Conference, Glasgow, UK, August 23-28, 2020; pp. 282-98.

70. Zhan, X.; Xie, J.; Liu, Z, Ong, Y. S.; Loy, C. C. Online deep clustering for unsupervised representation learning. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, Jun 13-19, 2020; IEEE, 2020; pp. 6688-97.

71. Wang, J.; Sun, K.; Cheng, T.; et al. Deep high-resolution representation learning for visual recognition. IEEE. Trans. Pattern. Anal. Mach. Intell. 2021, 43, 3349-64.

72. Jiang, P. T.; Zhang, C. B.; Hou, Q.; Cheng, M. M.; Wei, Y. LayerCAM: exploring hierarchical class activation maps for localization. IEEE. Trans. Image. Process. 2021, 30, 5875-88.

73. Zhang, P.; Boudaren, M. E. Y.; Jiang, Y.; et al. High-order triplet CRF-PCANet for unsupervised segmentation of nonstationary SAR image. IEEE. Trans. Geosci. Remote. Sensing. 2021, 59, 8433-54.

74. Feng, J.; Wang, X.; Liu, W. Deep graph cut network for weakly-supervised semantic segmentation. Sci. China. Inf. Sci. 2021, 64, 3065.

75. Wu, X.; Wang, T.; Li, Y.; Li, P.; Liu, Y. A CAM-based weakly supervised method for surface defect inspection. IEEE. Trans. Instrum. Meas. 2022, 71, 1-10.

76. Wang, X.; Yu, Z.; De Mello, S.; et al. FreeSOLO: learning to segment objects without annotations. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, USA, Jun 18-24, 2022; IEEE, 2022; pp. 14176-86.

77. Sledge, I. J.; Emigh, M. S.; King, J. L.; Woods, D. L.; Cobb, J. T.; Principe, J. C. Target detection and segmentation in circular-scan synthetic aperture sonar images using semisupervised convolutional encoder–decoders. IEEE. J. Oceanic. Eng. 2022, 47, 1099-128.

78. Chen, G.; He, C.; Wang, T.; Zhu, K.; Liao, P.; Zhang, X. A superpixel-guided unsupervised fast semantic segmentation method of remote sensing images. IEEE. Geosci. Remote. Sensing. Lett. 2022, 19, 1-5.

79. Zhang, T.; Wei, S.; Ji, S. E2EC: an end-to-end contour-based method for high-quality high-speed instance segmentation. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, USA, Jun 18-24, 2022; IEEE, 2022. pp. 4443-52.

80. Yeung, C.; Lam, K. Attentive boundary-aware fusion for defect semantic segmentation using transformer. IEEE. Trans. Instrum. Meas. 2023, 72, 1-13.

81. He, D.; Ma, R.; Jin, Z.; et al. Welding quality detection of metro train body based on ABC mask R-CNN. Measurement 2023, 216, 112969.

82. Diaz, P. M.; Tittus, P. Fast detection of wind turbine blade damage using Cascade Mask R-DSCNN-aided drone inspection analysis. SIViP 2023, 17, 2333-41.

83. Zhang, B.; Wang, X.; Cui, J.; et al. Welding defects classification by weakly supervised semantic segmentation. NDT. E. Int. 2023, 138, 102899.

84. Wang, R.; Cheung, C. F.; Wang, C. Unsupervised defect segmentation in selective laser melting. IEEE. Trans. Instrum. Meas. 2023, 72, 1-10.

85. Wei, C.; Liang, J.; Liu, H.; Hou, Z.; Huan, Z. Multi-stage unsupervised fabric defect detection based on DCGAN. Vis. Comput. 2023, 39, 6655-71.

86. Midwinter, M.; Al‐Sabbag, Z. A.; Yeum, C. M. Unsupervised defect segmentation with pose priors. Computer. Aided. Civil. Eng. 2023, 38, 2455-71.

87. Zhan, T.; Gong, M.; Jiang, X.; Zhang, E. S3Net: superpixel-guided self-supervised learning network for multitemporal image change detection. IEEE. Geosci. Remote. Sensing. Lett. 2023, 20, 1-5.

88. Ma, S.; Song, K.; Niu, M.; Tian, H.; Wang, Y.; Yan, Y. Shape-consistent one-shot unsupervised domain adaptation for rail surface defect segmentation. IEEE. Trans. Ind. Inf. 2023, 19, 9667-79.

89. Wang, H.; Dalton, L.; Guo, R.; Mcclure, J.; Crandall, D.; Chen, C. Application of unsupervised deep learning to image segmentation and in-situ contact angle measurements in a CO2-water-rock system. Adv. Water. Resour. 2023, 173, 104385.

90. Nouri, M.; Baleghi, Y. An active contour model reinforced by convolutional neural network and texture description. Neurocomputing 2023, 528, 125-35.

91. Qi, H.; Cheng, L.; Kong, X.; Zhang, J.; Gu, J. WDLS: deep level set learning for weakly supervised aeroengine defect segmentation. IEEE. Trans. Ind. Inform. 2024, 20, 303-13.

92. Bai, Z.; Jing, J. Mobile-Deeplab: a lightweight pixel segmentation-based method for fabric defect detection. J. Intell. Manuf. 2024, 35, 3315-30.

93. Kong, D.; Hu, X.; Gong, Z.; Zhang, D. Segmentation of void defects in X-ray images of chip solder joints based on PCB-DeepLabV3 algorithm. Sci. Rep. 2024, 14, 11925.

94. Zhou, Y.; Zhang, J.; Ni, P.; Cao, Q.; Hu, J. A customised ConvNeXt-SCC network: integrating improved principal component analysis with ConvNeXt to enhance tire crown defect detection. Nondestruct. Test. Eva. 2024, 1-29.

95. Lei, Y.; Wang, X.; An, A.; Guan, H. Deeplab-YOLO: a method for detecting hot-spot defects in infrared image PV panels by combining segmentation and detection. J. Real. Time. Image. Proc. 2024, 21, 1415.

96. Shi, C.; Wang, K.; Zhang, G.; Li, Z.; Zhu, C. Efficient and accurate semi-supervised semantic segmentation for industrial surface defects. Sci. Rep. 2024, 14, 21874.

97. He, T.; Li, H.; Qian, Z.; Niu, C.; Huang, R. Research on weakly supervised pavement crack segmentation based on defect location by generative adversarial network and target re‐optimization. Construct. Build. Mater. 2024, 411, 134668.

98. Jiang, X.; Feng, J.; Yan, F.; et al. Foreground–background separation transformer for weakly supervised surface defect detection. J. Intell. Manuf. 2024. DOI: 10.1007/s10845-024-02446-8.

99. Jiang, D.; Cao, Y.; Yang, Q. CapNet: learning insulator self-blast from bounding box. IEEE. Trans. Instrum. Meas. 2024, 73, 1-10.

100. Cao, X.; Zou, H.; Li, J.; Ying, X.; He, S. OBBInst: remote sensing instance segmentation with oriented bounding box supervision. Int. J. Appl. Earth. Obs. Geoinf. 2024, 128, 103717.

101. Jiang, D.; Cao, Y.; Yang, Q. Weakly-supervised learning based automatic augmentation of aerial insulator images. Expert. Syst. Appl. 2024, 242, 122739.

102. Li, Y.; Fang, A.; Guo, Y.; Wang, X. Image fusion via mutual information maximization for semantic segmentation in autonomous vehicles. IEEE. Trans. Ind. Inf. 2024, 20, 5838-48.

103. Zhao, Q.; Wang, Y.; Lin, Y.; et al. Mixed noise-guided mutual constraint framework for unsupervised anomaly detection in smart industries. Comput. Commun. 2024, 216, 45-53.

104. Goyal, S.; Rajapakse, J. C. Self-supervised learning for hotspot detection and isolation from thermal images. Expert. Syst. Appl. 2024, 237, 121566.

105. Wang, L.; Peng, L.; Gui, R.; Hong, H.; Zhu, S. Unsupervised PolSAR image classification based on superpixel pseudo-labels and a similarity-matching network. Remote. Sens. 2024, 16, 4119.

106. Ding, Y.; Li, L.; Wang, W.; Yang, Y. Clustering propagation for universal medical image segmentation. In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA; June 16-22, 2024; IEEE, 2024; pp. 3357-69.

107. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE. 1998, 86, 2278-324.

108. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015; pp. 3431-40. https://openaccess.thecvf.com/content_cvpr_2015/html/Long_Fully_Convolutional_Networks_2015_CVPR_paper.html. (accessed 2025-02-19).

109. Chen, L. C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A. L. Semantic image segmentation with deep convolutional nets and fully connected CRFs. In International Conference on Learning Representations, San Diego, United States, May 2015. https://inria.hal.science/hal-01263610. (accessed 2025-02-19).

110. Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE. Trans. Pattern. Anal. Mach. Intell. 2017, 39, 2481-95.

111. Ronneberger, O.; Fischer, P.; Brox, T. U-net: convolutional networks for biomedical image segmentation. In Medical image computing and computer-assisted intervention - MICCAI 2015: 18th international conference, Munich, Germany, Oct 5-9, 2015; Springer, Cham, 2015; pp. 234-41.

112. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770-8. https://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf. (accessed 2025-02-19).

113. Wang, J.; Fan, J.; Wang, J. MDOAU-Net: a lightweight and robust deep learning model for SAR image segmentation in aquaculture raft monitoring. IEEE. Geosci. Remote. Sensing. Lett. 2022, 19, 1-5.

114. Chen, L. C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A. L. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE. Trans. Pattern. Anal. Mach. Intell. 2018, 40, 834-48.

115. Chen, L. C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017; arXiv: 1706.05587. Available from: https://arxiv.org/abs/1706.05587. [Last accessed on 19 Feb 2025].

116. Chen, L. C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European conference on computer vision (ECCV), 2018, pp. 801-18. https://openaccess.thecvf.com/content_ECCV_2018/papers/Liang-Chieh_Chen_Encoder-Decoder_with_Atrous_ECCV_2018_paper.pdf. (accessed 2025-02-19).

117. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 2881-90. https://openaccess.thecvf.com/content_cvpr_2017/papers/Zhao_Pyramid_Scene_Parsing_CVPR_2017_paper.pdf. (accessed 2025-02-19).

118. Guo, Y.; Xiao, Z.; Geng, L. Defect detection of 3D braided composites based on semantic segmentation. J. Text. Inst. 2023, 114, 574-83.

119. Lin, G.; Milan, A.; Shen, C.; Reid, I. Refinenet: multi-path refinement networks for high-resolution semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 1925-34. https://openaccess.thecvf.com/content_cvpr_2017/papers/Lin_RefineNet_Multi-Path_Refinement_CVPR_2017_paper.pdf. (accessed 2025-02-19).

120. Erten, H.; Bostanci, E.; Acici, K.; Guzel, M. S.; Asuroglu, T.; Aydin, A. Semantic segmentation with high-resolution sentinel-1 SAR data. Appl. Sci. 2023, 13, 6025.

121. Fu, J.; Liu, J.; Tian, H.; et al. Dual attention network for scene segmentation. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, Jun 15-20, 2019; IEEE, 2019; pp. 3146-54.

122. Romera, E.; Alvarez, J. M.; Bergasa, L. M.; Arroyo, R. ERFNet: efficient residual factorized ConvNet for real-time semantic segmentation. IEEE. Trans. Intell. Trans. Syst. 2018, 19, 263-72.

123. Mehta, S.; Rastegari, M.; Shapiro, L.; Hajishirzi, H. Espnetv2: a light-weight, power efficient, and general purpose convolutional neural network, '' in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beache, USA; Jun 15-20, 2019; IEEE, 2019. pp. 9190-200.

124. Peng, Y.; Wang, C.; Hao, Y.; et al. High-precision surface crack detection for rolling steel production equipment in ICPS. IEEE. Int. Things. J. 2024, 11, 4586-99.

125. Zhao, H.; Qi, X.; Shen, X.; Shi, J.; Jia, J. Icnet for real-time semantic segmentation on high-resolution images. In Proceedings of the European conference on computer vision (ECCV), 2018, pp. 405-20. https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_ICNet_for_Real-Time_ECCV_2018_paper.pdf. (accessed 2025-02-19).

126. Mallick, S.; Paul, J.; Sil, J. Response fusion attention U-ConvNext for accurate segmentation of optic disc and optic cup. Neurocomputing 2023, 559, 126798.

127. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE international conference on computer vision, 2017, pp. 2961-69. https://openaccess.thecvf.com/content_ICCV_2017/papers/He_Mask_R-CNN_ICCV_2017_paper.pdf. (accessed 2025-02-19).

128. Huang, Z.; Huang, L.; Gong, Y.; Huang, C.; Wang X. Mask scoring R-CNN. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA; Jun 15-20, 2019; IEEE, 2019; pp. 6409-18.

129. Geng, P.; Jia, M.; Ren, X. Tunnel lining water leakage image Segmentation based on improved BlendMask. Struct. Health. Monit. 2023, 22, 865-78.

130. Fathi, A.; Wojna, Z.; Rathod, V.; et al. Semantic instance segmentation via deep metric learning. arXiv 2017, arXiv: 1703.10277. Available from: https://arxiv.org/abs/1703.10277. [Last accessed on 19 Feb 2025].

131. Cai, Z.; Vasconcelos, N. Cascade R-CNN: high quality object detection and instance segmentation. IEEE. Trans. Pattern. Anal. Mach. Intell. 2021, 43, 1483-98.

132. Gu, W.; Bai, S.; Kong, L. A review on 2D instance segmentation based on deep neural networks. Image. Vis. Comput. 2022, 120, 104401.

133. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 779-88. https://www.academis.eu/machine_learning/_downloads/51a67e9194f116abefff5192f683e3d8/yolo.pdf. (accessed 2025-02-19).

134. Huang, X.; Zhu, J.; Huo, Y. SSA-YOLO: an improved YOLO for hot-rolled strip steel surface defect detection. IEEE. Trans. Instrum. Meas. 2024, 73, 1-17.

135. Tian, Z.; Shen, C.; Chen, H.; He, T. FCOS: fully convolutional one-stage object detection. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, Oct 27 - Nov 02, 2019; IEEE, 2019; pp. 9627-36.

136. Xu, W.; Wang, H.; Qi, F.; Lu, C. Explicit shape encoding for real-time instance segmentation. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, Oct 27 - Nov 02, 2019; IEEE, 2019; pp. 5168-77.

137. Mayr, M.; Hoffmann, M.; Maier, A.; Christlein, V. Weakly supervised segmentation of cracks on solar cells using normalized Lp norm. In 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, Sep 22-25, 2019; IEEE, 2019; pp. 1885-9.

138. Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning deep features for discriminative localization. In Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 2921-9. https://openaccess.thecvf.com/content_cvpr_2016/papers/Zhou_Learning_Deep_Features_CVPR_2016_paper.pdf. (accessed 2025-02-19).

139. Selvaraju, R. R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: visual explanations from deep networks via gradient-based localization. Int. J. Comput. Vis. 2020, 128, 336-59.

140. Wang, L.; Zhang, M.; Shi, W. CS-WSCDNet: class activation mapping and segment anything model-based framework for weakly supervised change detection. IEEE. Trans. Geosci. Remote. Sens. 2023, 61, 1-12.

141. Zhang, J.; Zhang, Q.; Gong, Y.; Zhang, J.; Chen, L.; Zeng, D. Weakly supervised semantic segmentation with consistency-constrained multiclass attention for remote sensing scenes. IEEE. Trans. Geosci. Remote. Sens. 2024, 62, 1-18.

142. Yang, R.; He, G.; Yin, R.; et al. Weakly-semi supervised extraction of rooftop photovoltaics from high-resolution images based on segment anything model and class activation map. Appl. Energy. 2024, 361, 122964.

143. Dai, J.; He, K.; Sun, J. Boxsup: exploiting bounding boxes to supervise convolutional networks for semantic segmentation. In Proceedings of the IEEE international conference on computer vision, 2015, pp. 1635-43. https://openaccess.thecvf.com/content_iccv_2015/papers/Dai_BoxSup_Exploiting_Bounding_ICCV_2015_paper.pdf. (accessed 2025-02-19).

144. Arbeláez, P.; Pont-Tuset, J.; Barron, J.; Marques, F.; Malik, J. Multiscale combinatorial grouping. In 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA; Jun 23-28, 2014; IEEE, 2014; pp. 328-35.

145. Kulharia, V.; Chandra, S.; Agrawal, A.; Torr, P.; Tyagi, A. Box2seg: attention weighted loss and discriminative feature learning for weakly supervised segmentation. https://www.robots.ox.ac.uk/~tvg/publications/2020/box2seg.pdf. (accessed 2025-02-19).

146. Chen, X.; Yuan, Y.; Zeng, G.; Wang, J. Semi-supervised semantic segmentation with cross pseudo supervision. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, USA; Jun 20-25, 2021; IEEE, 2021; pp. 2613-22.

147. Zhang, B.; Xiao, J.; Wei, Y.; Sun, M.; Huang, K. Reliability does matter: an end-to-end weakly supervised semantic segmentation approach. AAAI. 2020, 34, 12765-72.

148. Kanezaki, A. Unsupervised image segmentation by backpropagation. In 2018 IEEE international conference on acoustics, speech and signal processing (ICASSP), Calgary, Canada, Apr 15-20, 2018; IEEE, 2018; pp. 1543-7.

149. Ouali, Y.; Hudelot, C.; Tami, M. Autoregressive unsupervised image segmentation. In Computer Vision - ECCV 2020: 16th European Conference, Glasgow, UK, Aug 23-28, 2020; Springer, 2020; pp. 142-58.

150. Mirsadeghi, S. E.; Royat, A.; Rezatofighi, H. Unsupervised Image Segmentation by Mutual Information Maximization and Adversarial Regularization. IEEE. Robot. Autom. Lett. 2021, 6, 6931-8.

151. Chen, X.; He, K. Exploring simple siamese representation learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, USA, Jun 20-25, 2021; IEEE, 2021; pp. 15750-8.

152. Zhang, F.; Torr, P.; Ranftl, R.; Richter, S. Looking beyond single images for contrastive semantic segmentation learning. Adv. Neural Inf. Process. Syst.2021, 34, 3285-97. https://proceedings.neurips.cc/paper_files/paper/2021/file/1a68e5f4ade56ed1d4bf273e55510750-Paper.pdf. (accessed 2025-02-19).

153. Van Gansbeke, W.; Vandenhende, S.; Georgoulis, S.; Van Gool, L. Unsupervised semantic segmentation by contrasting object mask proposals. In 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, Canada, Oct 10-17, 2021; IEEE, 2021; pp. 10052-62.

154. Hwang, J. J.; Yu, S.; Shi, J.; et al. SegSort: segmentation by discriminative sorting of segments. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, Oct 27 - Nov 02, 2019; IEEE, 2019; pp. 7334-44.

155. van Knippenberg, L.; van Sloun, R. J.; Mischi, M.; de Ruijter, J.; Lopata, R.; Bouwman, R. A. Unsupervised domain adaptation method for segmenting cross-sectional CCA images. Comput. Methods. Prog. Biomed. 2022, 225, 107037.

156. Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Alvarez, J. M.; Luo, P. Segformer: simple and efficient design for semantic segmentation with transformers. Adv. Neural Inf. Process. Syst.2021, 34, 12077-90. https://proceedings.neurips.cc/paper_files/paper/2021/file/64f1f27bf1b4ec22924fd0acb550c235-Paper.pdf. (accessed 2025-02-19).

157. Zhang, H.; Wang, S.; Lu, S.; Yao, L.; Hu, Y. Attention-gate-based U-shaped reconstruction network (AGUR-Net) for color-patterned fabric defect detection. Text. Res. J. 2023, 93, 3459-77.

158. Ma, P.; He, X.; Chen, Y.; Liu, Y. ISOD: improved small object detection based on extended scale feature pyramid network. Vis. Comput. 2025, 41, 465-79.

159. Rajchl, M.; Lee, M. C. H.; Oktay, O.; et al. DeepCut: object segmentation from bounding box annotations using convolutional neural networks. IEEE. Trans. Med. Imaging. 2017, 36, 674-83.

160. Caron, M.; Bojanowski, P.; Joulin, A.; Douze, M. Deep clustering for unsupervised learning of visual features. In Proceedings of the European conference on computer vision (ECCV), 2018, pp. 132-49. https://openaccess.thecvf.com/content_ECCV_2018/papers/Mathilde_Caron_Deep_Clustering_for_ECCV_2018_paper.pdf. (accessed 2025-02-19).

161. Homayounfar, N.; Xiong, Y.; Liang, J.; Ma, W. C.; Urtasun, R. LevelSet R-CNN: a deep variational method for instance segmentation. In Computer Vision - ECCV 2020: 16th European Conference, Glasgow, UK, Aug 23-28, 2020; Springer, 2020; pp. 555-71.

162. Lin, D.; Dai, J.; Jia, J.; He, K.; Sun, J. Scribblesup: scribble-supervised convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 3159-67. https://openaccess.thecvf.com/content_cvpr_2016/papers/Lin_ScribbleSup_Scribble-Supervised_Convolutional_CVPR_2016_paper.pdf. (accessed 2025-02-19).

163. Siva Raja, P.; rani, A. V. Brain tumor classification using a hybrid deep autoencoder with Bayesian fuzzy clustering-based segmentation approach. Biocybern. Biomed. Eng. 2020, 40, 440-53.

164. Lin, T. Y.; Maire, M.; Belongie, S.; et al. Microsoft COCO: common objects in context. In Computer Vision - ECCV 2014: 13th European Conference, Zurich, Switzerland, Sep 6-12, 2014; Springer, 2014; pp. 740-55.

165. Mottaghi, R.; Chen, X.; Liu, X.; et al. The role of context for object detection and semantic segmentation in the wild. In 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA; Jun 23-28, 2014; IEEE, 2014; pp. 891-8.

Intelligence & Robotics
ISSN 2770-3541 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/