REFERENCES

1. Vu, K. A. T.; Stewart, M. G. Structural reliability of concrete bridges including improved chloride-induced corrosion models. Struct. Saf. 2000, 22, 313-33.

2. Abdel-Qader, I.; Pashaie-Rad, S.; Abudayyeh, O.; Yehia, S. PCA-based algorithm for unsupervised bridge crack detection. Adv. Eng. Softw. 2006, 37, 771-78.

3. Salman, M.; Mathavan, S.; Kamal, K.; Rahman, M. Pavement crack detection using the Gabor filter. In 16th international IEEE conference on intelligent transportation systems (ITSC 2013), The Hague, Netherlands, Oct 06-09, 2013; IEEE, 2013; pp 2039–44.

4. Zhou, S.; Song, W. Robust image-based surface crack detection using range data. J. Comput. Civ. Eng. 2020, 34, 0000873.

5. Vivekananthan, V.; Vignesh, R.; Vasanthaseelan, S.; Joel, E.; Kumar, K. S. Concrete bridge crack detection by image processing technique by using the improved OTSU method. Mater. Today. Proc. 2023, 74, 1002-7.

6. Zhu, Z.; Al-Qadi, I. L. Crack detection of asphalt concrete using combined fracture mechanics and digital image correlation. J. Transp. Eng. Part. B. Pavements. 2023, 149, 04023012.

7. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE. 1998, 86, 2278-324.

8. Shelhamer, E.; Long, J.; Darrell, T. Fully convolutional networks for semantic segmentation. IEEE. Trans. Pattern. Anal. Mach. Intell. 2017, 39, 640-51.

9. Adhikari, R. S.; Moselhi, O.; Bagchi, A. Image-based retrieval of concrete crack properties for bridge inspection. Autom. Constr. 2014, 39, 180-94.

10. Zhang, L.; Yang, F.; Daniel Zhang, Y.; Zhu, Y. J. Road crack detection using deep convolutional neural network. In 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, USA, Sep 25-28, 2016; IEEE, 2016; pp 3708-12.

11. Mokhtari, S.; Wu, L.; Yun, H. B. Comparison of supervised classification techniques for vision-based pavement crack detection. Transp. Res. Rec. 2016, 2595, 119-27.

12. Xu, H.; Su, X.; Wang, Y.; Cai, H.; Cui, K.; Chen, X. Automatic bridge crack detection using a convolutional neural network. Appl. Sci. 2019, 9, 2867.

13. Hoskere, V.; Narazaki, Y.; Hoang, T. A.; Spencer, B. F. J. MaDnet: multi-task semantic segmentation of multiple types of structural materials and damage in images of civil infrastructure. J. Civil. Struct. Health. Monit. 2020, 10, 757-73.

14. Iraniparast, M.; Ranjbar, S.; Rahai, M.; Moghadas Nejad, F. Surface concrete cracks detection and segmentation using transfer learning and multi-resolution image processing. Structures 2023, 54, 386-98.

15. Ding, J.; Li, W.; Pei, L.; Yang, M.; Ye, C.; Yuan, B. Sw-YoloX: an anchor-free detector based transformer for sea surface object detection. Expert. Syst. Appl. 2023, 217, 119560.

16. Xu, Y.; Fan, Y.; Bao, Y.; Li, H. Task-aware meta-learning paradigm for universal structural damage segmentation using limited images. Eng. Struct. 2023, 284, 115917.

17. Ye, G.; Qu, J.; Tao, J.; Dai, W.; Mao, Y.; Jin, Q. Autonomous surface crack identification of concrete structures based on the YOLOv7 algorithm. J. Build. Eng. 2023, 73, 106688.

18. Wu, Z.; Tang, Y.; Hong, B.; Liang, B.; Liu, Y. Enhanced precision in dam crack width measurement: leveraging advanced lightweight network identification for pixel-level accuracy. Int. J. Intell. Syst. 2023, 2023, 9940881.

19. Qi, Y.; He, Y.; Qi, X.; Zhang, Y.; Yang, G. Dynamic snake convolution based on topological geometric constraints for tubular structure segmentation. arXiv2023, arXiv:2307.08388. Available online: https://doi.org/10.48550/arXiv.2307.08388 (accessed 16 Jan 2025).

20. Liu, Z.; Wang, Y.; Vaidya, S.; et al. KAN: Kolmogorov-Arnold networks. arXiv2024, arXiv:2404.19756. Available online: https://doi.org/10.48550/arXiv.2404.19756 (accessed 16 Jan 2025).

21. Dorafshan, S.; Thomas, R. J.; Maguire, M. SDNET2018: an annotated image dataset for non-contact concrete crack detection using deep convolutional neural networks. Data. Brief. 2018, 21, 1664-8.

22. Goo, J. M.; Milidonis, X.; Artusi, A.; Boehm, J.; Ciliberto, C. Hybrid-segmentor: a hybrid approach to automated fine-grained crack segmentation in civil infrastructure. arXiv2024, arXiv:2409.02866. Available online: https://doi.org/10.48550/arXiv.2409.02866 (accessed 16 Jan 2025).

23. Liu, F.; Wang, L. UNet-based model for crack detection integrating visual explanations. Constr. Build. Mater. 2022, 322, 126265.

24. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. arXiv2014, arXiv:1411.4038. Available online: https://doi.org/10.48550/arXiv.1411.4038 (accessed 16 Jan 2025).27244717.

25. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. arXiv2016, arXiv:1612.01105. Available online: https://doi.org/10.48550/arXiv.1612.01105 (accessed 16 Jan 2025).

26. Song, F.; Wang, D.; Dai, L.; Yang, X. Concrete bridge crack semantic segmentation method based on improved DeepLabV3+. In 2024 IEEE 13th Data Driven Control and Learning Systems Conference (DDCLS), Kaifeng, China, May 17-19, 2024; IEEE, 2024; pp 1293-8.

27. Otsu, N. A threshold selection method from gray-level histograms. IEEE. Trans. Syst. Man. Cybern. 1979, 9, 62-6.

28. Zou, Q.; Zhang, Z.; Li, Q.; Qi, X.; Wang, Q.; Wang, S. DeepCrack: learning hierarchical convolutional features for crack detection. IEEE. Trans. Image. Proc. 2019, 28, 1498-512.

29. Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Alvarez, J. M.; Luo, P. SegFormer: simple and efficient design for semantic segmentation with transformers. arXiv2021, arXiv:2105.15203. Available online: https://doi.org/10.48550/arXiv.2105.15203 (accessed 16 Jan 2025).

30. Li, Y.; Ma, R.; Liu, H.; Cheng, G. Real-time high-resolution neural network with semantic guidance for crack segmentation. Autom,. Const. 2023, 156, 105112.

31. Xie, S.; Tu, Z. Holistically-nested edge detection. arXiv2015, arXiv:1504.06375. Available online: https://doi.org/10.48550/arXiv.1504.06375 (accessed 16 Jan 2025).

32. Yang, J.; Li, H.; Zou, J.; Jiang, S.; Li, R.; Liu, X. Concrete crack segmentation based on UAV-enabled edge computing. Neurocomputing 2022, 485, 233-41.

33. Goo, J. M.; Milidonis, X.; Artusi, A.; Boehm, J.; Ciliberto, C. Hybrid-segmentor: a hybrid approach to automated fine-grained crack segmentation in civil infrastructure. arXiv2024, arXiv:2409.02866. Available online: https://doi.org/10.48550/arXiv.2409.02866 (accessed 16 Jan 2025).

Intelligence & Robotics
ISSN 2770-3541 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/