1. Erden, F.; Çetin, A. E. Hand gesture based remote control system using infrared sensors and a camera. IEEE. Trans. Consum. Electron. 2014, 60, 675-80.
2. Gade, R.; Moeslund, T. B. Thermal cameras and applications: a survey. Mach. Vis. Appl. 2014, 25, 245-62.
3. Wijnhoven, R. G. J.; de With, P. H. N. Identity verification using computer vision for automatic garage door opening. IEEE. Trans. Consum. Electron. 2011, 57, 906-14.
4. Kang, J.; Anderson, D. V.; Hayes, M. H. Face recognition for vehicle personalization with near infrared frame differencing. IEEE. Trans. Consum. Electron. 2016, 62, 316-24.
5. Chen, C.; Xu, Y.; Yang, X. User tailored colorization using automatic scribbles and hierarchical features. Digit. Signal. Process. 2019, 87, 155-65.
6. Tang, Y.; Zhu, M.; Chen, Z.; et al. Seismic performance evaluation of recycled aggregate concrete-filled steel tubular columns with field strain detected via a novel mark-free vision method. Structures 2022, 37, 426-41.
7. Tang, Y.; Qi, S.; Zhu, L.; Zhuo, X.; Zhang, Y.; Meng, F. Obstacle avoidance motion in mobile robotics. J. Syst. Simul. 2024, 36, 1-26.
8. Wan, S.; Guan, S.; Tang, Y. Advancing bridge structural health monitoring: insights into knowledge-driven and data-driven approaches. J. Data. Sci. Intell. Syst. 2024, 2, 129-40.
9. Hu, K.; Chen, Z.; Kang, H.; Tang, Y. 3D vision technologies for a self-developed structural external crack damage recognition robot. Autom. Constr. 2024, 159, 105262.
10. Zou, C.; Mo, H.; Gao, C.; Du, R.; Fu, H. Language-based colorization of scene sketches. ACM. Trans. Graph. 2019, 38, 1-16.
11. Shin, Y. G.; Choi, K. A.; Kim, S. T.; Ko, S. J. A novel single IR light based gaze estimation method using virtual glints. IEEE. Trans. Consum. Electron. 2015, 61, 254-60.
12. Dong X, Li W, Wang X, Wang Y. Learning a deep convolutional network for colorization in monochrome-color dual-lens system. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2019. pp. 8255–62.
13. Gupta RK, Chia AYS, Rajan D, Ng ES, Zhiyong H. Image colorization using similar images. In: Proceedings of the 20th ACM International Conference on Multimedia. MM '12. New York, NY, USA: Association for Computing Machinery; 2012. pp. 369–78.
14. Iizuka, S.; Simo-Serra, E.; Ishikawa, H. Let there be color! Joint end-to-end learning of global and local image priors for automatic image colorization with simultaneous classification. ACM. Trans. Graph. 2016, 35, 1-11.
17. Larsson G, Maire M, Shakhnarovich G. Learning representations for automatic colorization. In: European conference on computer vision. Springer; 2016. pp. 577–93.
18. Levin A, Lischinski D, Weiss Y. Colorization using optimization. In: ACM SIGGRAPH 2004 Papers. SIGGRAPH '04. New York, NY, USA: Association for Computing Machinery; 2004. pp. 689–94.
19. Reinhard, E.; Adhikhmin, M.; Gooch, B.; Shirley, P. Color transfer between images. IEEE. Comput. Graph. Appl. 2001, 21, 34-41.
20. Larsson G, Maire M, Shakhnarovich G. Learning representations for automatic colorization. arXiv 2016;arXiv: 1603.06668. Available from: https://doi.org/10.48550/arXiv.1603.06668. [accessed 8 Jan 2025].
21. Zhao, J.; Han, J.; Shao, L.; Snoek, C. G. M. Pixelated semantic colorization. Int. J. Comput. Vis. 2020, 128, 818-34.
22. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; et al. Generative adversarial networks. Commun. ACM. 2020, 63, 139-44.
23. Isola P, Zhu JY, Zhou T, Efros AA. Image-to-image translation with conditional adversarial networks. arXiv 2016;arXiv: 1611.07004. Available from: https://doi.org/10.48550/arXiv.1611.07004. [accessed 8 Jan 2025].
27. Berg A, Ahlberg J, Felsberg M. Generating visible spectrum images from thermal infrared. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW); 2018 Jun 18-22; Salt Lake City, USA. IEEE; 2018.
28. Kuang, X.; Zhu, J.; Sui, X.; et al. Thermal infrared colorization via conditional generative adversarial network. Infrared. Phys. Technol. 2020, 107, 103338.
29. Zhao, Y.; Po, L. M.; Cheung, K. W.; Yu, W. Y.; Rehman, Y. A. U. SCGAN: saliency map-guided colorization with generative adversarial network. IEEE. Trans. Circuits. Syst. Video. Technol. 2021, 31, 3062-77.
30. Liao, H.; Jiang, Q.; Jin, X.; et al. MUGAN: thermal infrared image colorization using mixed-skipping UNet and generative adversarial network. IEEE. Trans. Intell. Vehicles. 2023, 8, 2954-69.
31. He, Y.; Jin, X.; Jiang, Q.; et al. LKAT-GAN: a GAN for thermal infrared image colorization based on large kernel and attentionUNet-transformer. IEEE. Trans. Consum. Electron. 2023, 69, 478-89.
32. Luo, F.; Li, Y.; Zeng, G.; Peng, P.; Wang, G.; Li, Y. Thermal infrared image colorization for nighttime driving scenes with top-down guided attention. IEEE. Trans. Intell. Transp. Syst. 2022, 23, 15808-23.
34. Li S, Han B, Yu Z, Liu CH, Chen K, Wang S. I2V-GAN: unpaired infrared-to-visible video translation. arXiv 2021;arXiv: 2108.00913. Available from: https://doi.org/10.48550/arXiv.2108.00913. [accessed 8 Jan 2025].
35. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2016 Jun 27-30; Las Vegas, USA. IEEE; 2016. pp. 770-8.
37. Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z. Swin transformer: hierarchical vision transformer using shifted windows. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV); 2021 Oct 10-17; Montreal, Canada. IEEE; 2021. pp. 9992-10002.
38. Li, G.; Duan, N.; Fang, Y.; Gong, M.; Jiang, D. Unicoder-Vl: a universal encoder for vision and language by cross-modal pre-training. Proc. AAAI. Conf. Artif. Intell. 2020, 34, 11336-44.
39. Lu J, Batra D, Parikh D, Lee S. Vilbert: pretraining task-agnostic visiolinguistic representations for vision-and-language tasks. arXiv 2019;arXiv: 1908.02265. Available from: https://doi.org/10.48550/arXiv.1908.02265. [accessed 8 Jan 2025].
40. Tan H, Bansal M. Lxmert: learning cross-modality encoder representations from transformers. arXiv 2019;arXiv: 1908.07490. Available from: https://doi.org/10.48550/arXiv.1908.07490. [accessed 8 Jan 2025].
41. Radford A, Kim JW, Hallacy C, et al. Learning transferable visual models from natural language supervision. arXiv 2021;arXiv: 2103.00020. Available from: https://doi.org/10.48550/arXiv.2103.00020. [accessed 8 Jan 2025].
42. Kirillov A, Mintun E, Ravi N, Mao H, Rolland C, Gustafson L. Segment anything. In: 2023 IEEE/CVF International Conference on Computer Vision (ICCV); 2023 Oct 01-06; Paris, France. IEEE; 2023. pp. 3992-4003.
43. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv 2014;arXiv: 1409.1556. Available from: https://doi.org/10.48550/arXiv.1409.1556. [accessed 8 Jan 2025].
44. Hwang S, Park J, Kim N, Choi Y, So Kweon I. Multispectral pedestrian detection: benchmark dataset and baseline. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2015 Jun 07-12; Boston, USA. IEEE; 2015. pp. 1037-45.
45. Luo, F. Y.; Liu, S. L.; Cao, Y. J.; Yang, K. F.; Xie, C. Y.; Liu, Y. Nighttime thermal infrared image colorization with feedback-based object appearance learning. IEEE. Trans. Circuits. Syst. Video. Technol. 2024, 34, 4745-61.
46. Tan, M. J.; Gao, S. B.; Xu, W. Z.; Han, S. C. Visible-infrared image fusion based on early visual information processing mechanisms. IEEE. Trans. Circuits. Syst. Video. Technol. 2021, 31, 4357-69.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.