REFERENCES
1. Chen, J.; Ye, J.; Zhuang, C.; Qin, Q.; Shu, Y. Liner shipping alliance management: overview and future research directions. Ocean. Coast. Manag. 2022, 219, 106039.
2. Chen, J.; Zhuang, C.; Xu, H.; Xu, L.; Ye, S.; Rangel-Buitrago, N. Collaborative management evaluation of container shipping alliance in maritime logistics industry: CKYHE case analysis. Ocean. Coast. Manag. 2022, 225, 106176.
3. Han, Z.; Wang, D.; Liu, F.; Zhao, Z. Multi-AGV path planning with double-path constraints by using an improved genetic algorithm. PLoS. One. 2017, 12, e0181747.
4. Sun, P. Z.; You, J.; Qiu, S.; et al. AGV-based vehicle transportation in automated container terminals: a survey. IEEE. Trans. Intell. Transport. Syst. 2023, 24, 341-56.
5. Miyombo, M. E.; Liu, Y.; Mulenga, C. M.; et al. Optimal path planning in a real-world radioactive environment: a comparative study of A-star and Dijkstra algorithms. Nucl. Eng. Des. 2024, 420, 113039.
6. Chen, X.; Liu, S.; Zhao, J.; Wu, H.; Xian, J.; Montewka, J. Autonomous port management based AGV path planning and optimization via an ensemble reinforcement learning framework. Ocean. Coast. Manag. 2024, 251, 107087.
7. Zhai, S.; Pei, Y. The dynamic path planning of autonomous vehicles on icy and snowy roads based on an improved artificial potential field. Sustainability 2023, 15, 15377.
8. Tang, G.; Tang, C.; Claramunt, C.; Hu, X.; Zhou, P. Geometric A-star algorithm: an improved A-star algorithm for AGV path planning in a port environment. IEEE. Access. 2021, 9, 59196-210.
9. Yin, X.; Cai, P.; Zhao, K.; Zhang, Y.; Zhou, Q.; Yao, D. Dynamic path planning of AGV based on kinematical constraint A* algorithm and following DWA fusion algorithms. Sensors 2023, 23, 4102.
10. Meng, X.; Tang, J.; Yang, F.; Wang, Z. Lane-changing trajectory prediction based on multi-task learning. Transp. Saf. Environ. 2023, 5, tdac073.
11. Wu, B.; Zhang, W.; Chi, X.; Jiang, D.; Yi, Y.; Lu, Y. A novel AGV path planning approach for narrow channels based on the Bi-RRT algorithm with a failure rate threshold. Sensors 2023, 23, 7547.
12. Li, Y.; Li, J.; Zhou, W.; Yao, Q.; Nie, J.; Qi, X. Robot path planning navigation for dense planting red jujube orchards based on the joint improved A* and DWA algorithms under laser SLAM. Agriculture 2022, 12, 1445.
13. Cui, G.; Yin, Y.; Xu, Q.; Song, C.; Li, G.; Li, S. Efficient path planning for automated valet parking: integrating hybrid A* search with geometric curves. Int J Automot Technol 2024.
14. Sun, B.; Niu, N. Multi-AUVs cooperative path planning in 3D underwater terrain and vortex environments based on improved multi-objective particle swarm optimization algorithm. Ocean. Eng. 2024, 311, 118944.
15. Huang, T.; Fan, K.; Sun, W. Density gradient-RRT: An improved rapidly exploring random tree algorithm for UAV path planning. Expert. Syst. Appl. 2024, 252, 124121.
16. Wang, H.; Lai, H.; Du, H.; Gao, G. IBPF-RRT*: an improved path planning algorithm with Ultra-low number of iterations and stabilized optimal path quality. J. King. Saud. Univ. Comput. Inf. Sci. 2024, 36, 102146.
17. Xu, W.; Wang, Q.; Yu, M.; Zhao, D. Path planning for multi-AGV systems based on two-stage scheduling. Int. J. Performability. Eng. 2017, 13, 1347-57.
18. Huang, H.; Fang, Z.; Wang, Y.; Tang, J.; Fu, X. Analysing taxi customer-search behaviour using Copula-based joint model. Transp. Saf. Environ. 2022, 4, tdab033.
19. Zhou, Z.; Xu, L.; Qin, H.; Zhang, B.; Shang, G.; Xu, Z. A multi-AGV fast path planning method based on improved CBS algorithm in workshops. Proc. Inst. Mech. Eng. C. 2024, 238, 1507-21.
20. Wu, Z.; Su, W.; Li, J. Multi-robot path planning based on improved artificial potential field and B-spline curve optimization. In: 2019 Chinese Control Conference (CCC); 2019 Jul 27-30; Guangzhou, China. IEEE; 2019. pp. 4691-6.
21. Nazarahari, M.; Khanmirza, E.; Doostie, S. Multi-objective multi-robot path planning in continuous environment using an enhanced genetic algorithm. Expert. Syst. Appl. 2019, 115, 106-20.
22. Ning, Y.; Li, T.; Yao, C.; Du, W.; Zhang, Y. HMS-RRT: a novel hybrid multi-strategy rapidly-exploring random tree algorithm for multi-robot collaborative exploration in unknown environments. Expert. Syst. Appl. 2024, 247, 123238.
23. Liu, X.; Tang, J.; Yuan, C.; Gao, F.; Ding, X. Examining the characteristics between time and distance gaps of secondary crashes. Transp. Saf. Environ. 2023, 6, tdad014.
24. Mai, X.; Dong, N.; Liu, S.; Chen, H. UAV path planning based on a dual-strategy ant colony optimization algorithm. Intell. Robot. 2023, 3, 666-83.