REFERENCES

1. Li L, Wang H, Li C. A review of deep learning fusion methods for infrared and visible images. Infrared Laser Eng 2022;51:20220125.

2. Shen Y, Huang C, Huang F, Li J, Zhu M, Wang S. Research progress of infrared and visible image fusion technology. Infrared Laser Eng 2021;50:20200467.

3. Liu B, Dong D, Chen J. Image fusion method based on directional contrast pyramid. J Quantum Electron 2017;34:405-13. Available from: https://m.researching.cn/articles/OJb55f12fb8e8c310f. [Last accessed on 26 Dec 2024].

4. Meng F, Song M, Guo B, Shi R, Shan D. Image fusion based on object region detection and non-subsampled contourlet transform. Comput Electr Eng 2017;62:375-83.

5. Zhang Y, Qiu Q, Liu H, Ma X, Shao J. Brain image fusion based on multi-scale decomposition and improved sparse representation. J Shaanxi Univ Technology 2023;38:39-47. Available from: https://kns.cnki.net/kcms2/article/abstract?v=8XtZWovJaIRKW_m-UDySgTjWyqyco1C29tm9qtlAQukS1yBmvKDlfsLyujV75oXhuqr7_fIir8qYF-i4Vh6zcRFxkf38gN_JP301fxZmMDCamAZzIfynKMzcrepn3ta_QzURcktRLBXYwBhm5QweFEojPKfTZQ3aUF62LXfeTAwfYBi0SoRJzwD8WebuubMP&uniplatform=NZKPT&language=CHS. [Last accessed on 26 Dec 2024].

7. Chen H, Deng L, Zhu L, Dong M. ECFuse: edge-consistent and correlation-driven fusion framework for infrared and visible image fusion. Sensors 2023;23:8071.

8. Min L, Cao S, Zhao H, Liu P. Infrared and visible image fusion using improved generative adversarial networks. Infrared Laser Eng 2022;51:20210291.

9. Liu Y, Chen X, Peng H, Wang Z. Multi-focus image fusion with a deep convolutional neural network. Inform Fusion 2017;36:191-207.

10. Li H, Wu XJ. DenseFuse: a fusion approach to infrared and visible images. IEEE Trans Image Process 2018;28:2614-23.

11. Li H, Wu XJ, Durrani T. NestFuse: an infrared and visible image fusion architecture based on nest connection and spatial/channel attention models. IEEE Trans Instrum Meas 2020;69:9645-56.

12. Chang Z, Feng Z, Yang S, Gao Q. AFT: adaptive fusion transformer for visible and infrared images. IEEE Trans Image Process 2023;32:2077-92.

13. Goodfellow IJ, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks. Commun ACM 2020;63:139-44.

14. Ma J, Yu W, Liang P, Li C, Jiang J. FusionGAN: a generative adversarial network for infrared and visible image fusion. Inform Fusion 2018;48:11-26.

15. Ma J, Zhang H, Shao Z, Liang P, Xu H. GANMcC: a generative adversarial network with multiclassification constraints for infrared and visible image fusion. IEEE Trans Instrum Meas 2020;70:1-14.

16. Ma J, Xu H, Jiang J, Mei X, Zhang XP. DDcGAN: a dual-discriminator conditional generative adversarial network for multi-resolution image fusion. IEEE Trans Image Process 2020;29:4980-95.

17. Zhou H, Hou J, Zhang Y, Ma J, Ling H. Unified gradient-and intensity-discriminator generative adversarial network for image fusion. Inform Fusion 2022;88:184-201.

18. Rao D, Xu T, Wu XJ. TGFuse: an infrared and visible image fusion approach based on transformer and generative adversarial network. IEEE Trans Image Process 2023; doi: 10.1109/TIP.2023.3273451.

19. Li H, Cen Y, Liu Y, Chen X, Yu Z. Different input resolutions and arbitrary output resolution: a meta learning-based deep framework for infrared and visible image fusion. IEEE Trans Image Process 2021;30:4070-83.

20. Xu X, Shen Y, Han S. Dense-FG: a fusion GAN model by using densely connected blocks to fuse infrared and visible images. Appl Sci 2023;13:4684.

21. Yi Y, Li Y, Du J, Wang S. An infrared and visible image fusion method based on improved GAN with dropout layer. In: The Proceedings of the 18th Annual Conference of China Electrotechnical Society. Springer; 2024. p. 1–8.

22. Yin H, Xiao J, Chen H. CSPA-GAN: a cross-scale pyramid attention GAN for infrared and visible image fusion. IEEE Trans Instrum Meas 2023;72:1-11.

23. Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2014. pp. 580–7. Available from: https://openaccess.thecvf.com/content_cvpr_2014/html/Girshick_Rich_Feature_Hierarchies_2014_CVPR_paper.html. [Last accessed on 26 Dec 2024].

24. He K, Zhang X, Ren S, Sun J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans Pattern Anal Mach. Intell 2015;37:1904-16.

25. Girshick R. Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision; 2015. pp. 1440-48. Available from: https://openaccess.thecvf.com/content_iccv_2015/papers/Girshick_Fast_R-CNN_ICCV_2015_paper.pdf. [Last accessed on 26 Dec 2024].

26. Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2016. pp. 779–88. Available from: https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Redmon_You_Only_Look_CVPR_2016_paper.pdf. [Last accessed on 26 Dec 2024].

27. Liu W, Anguelov D, Erhan D, et al. SSD: single shot multibox detector. In: Computer Vision - ECCV 2016: 14th European Conference; 2016 Oct 11-14; Amsterdam, the Netherlands. Springer; 2016. pp. 21–37.

28. Lin TY, Dollár P, Girshick R, He K, Hariharan B, Belongie S. Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2017. pp. 2117–25. Available from: https://openaccess.thecvf.com/content_cvpr_2017/papers/Lin_Feature_Pyramid_Networks_CVPR_2017_paper.pdf. [Last accessed on 26 Dec 2024].

29. Lin TY, Goyal P, Girshick R, He K, Dollár P. Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision; 2017. pp. 2980–8. Available from: https://openaccess.thecvf.com/content_ICCV_2017/papers/Lin_Focal_Loss_for_ICCV_2017_paper.pdf. [Last accessed on 26 Dec 2024].

30. Zhang Y, Tian Y, Kong Y, Zhong B, Fu Y. Residual dense network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2018. pp. 2472–81. Available from: https://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Residual_Dense_Network_CVPR_2018_paper.pdf. [Last accessed on 26 Dec 2024].

31. Gao SH, Cheng MM, Zhao K, Zhang XY, Yang MH, Torr P. Res2net: a new multi-scale backbone architecture. IEEE Trans Pattern Anal Mach Intell 2019;43:652-62.

32. Kim Y, Koh YJ, Lee C, Kim S, Kim CS. Dark image enhancement based onpairwise target contrast and multi-scale detail boosting. In: 2015 IEEE international conference on image processing (ICIP); 2015 Sep 27-30; Quebec City, Canada. IEEE; 2015. pp. 1404–8.

33. Xu H, Ma J, Jiang J, Guo X, Ling H. U2Fusion: a unified unsupervised image fusion network. IEEE Trans Pattern Anal Mach Intell 2020;44:502-18.

34. Zhao Z, Xu S, Zhang C, Liu J, Li P, Zhang J. DIDFuse: deep image decomposition for infrared and visible image fusion. arXiv 2020. arXiv: 2003.09210. Available from: https://doi.org/10.48550/arXiv.2003.09210. [Last accessed on 26 Dec 2024].

35. Fu Y, Wu XJ, Durrani T. Image fusion based on generative adversarial network consistent with perception. Inform Fusion 2021;72:110-25.

Intelligence & Robotics
ISSN 2770-3541 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/