REFERENCES
1. Jia N, Chen Y, Liu X, Wang H. DIG: dual interaction and guidance network for salient object detection. Appl Intell. 2023;53:28039-53.
2. Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell. 1998;20:1254-9.
3. Liu T, Yuan Z, Sun J, et al. Learning to detect a salient object. IEEE Trans Pattern Anal Mach Intell. 2010;33:353-67.
4. Tang G, Ni J, Shi P, Li Y, Zhu J. An improved ViBe-based approach for moving object detection. Intell Robot. 2022;2:130-44.
5. Geng Y, Lian Y, Yang S, Zhou M, Cao J. Reliable part guided multiple level attention learning for person re-identification. J Circuits Syst Comput. 2021;30:2150246.
6. Ji A, Woo WL, Wong EWL, Quek YT. Rail track condition monitoring: a review on deep learning approaches. Intell Robot. 2021;1:151-75.
7. Zhao KWG, Wang Y, Ma S, Lu J. SaliencyVR: saliency matching based visual relocalization for autonomous vehicle. IEEE Trans Intell Veh. 2024:1-10.
8. Li X, Zhang T, Liu Z, et al. Saliency guided siamese attention network for infrared ship target tracking. IEEE Trans Intell Veh. 2024:1-18.
9. Ding N, Zhang C, Eskandarian A. SalienDet: a saliency-based feature enhancement algorithm for object detection for autonomous driving. IEEE Trans Intell Veh. 2023;9:2624-35.
10. Qin L, Shi Y, He Y, et al. ID-YOLO: real-time salient object detection based on the driver’s fixation region. IEEE Trans Intell Transp Syst. 2022;23:15898-908.
11. Qian W, He Z, Chen C, Peng S. Navigating diverse salient features for vehicle re-identification. IEEE Trans Intell Transp Syst. 2022;23:24578-87.
12. Ravindran R, Santora MJ, Jamali MM. Multi-object detection and tracking, based on DNN, for autonomous vehicles: a review. IEEE Sens J. 2020;21:5668-77.
13. Liu N, Han J, Yang MH. Picanet: learning pixel-wise contextual attention for saliency detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2018. pp. 3089–98.
14. Pang Y, Zhao X, Zhang L, Lu H. Multi-scale interactive network for salient object detection. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2020 Jun 13-19; Seattle, USA. IEEE; 2020. pp. 9413–22.
15. Cheng MM, Gao SH, Borji A, Tan YQ, Lin Z, Wang M. A highly efficient model to study the semantics of salient object detection. IEEE Trans Pattern Anal Mach Intell. 2021;44:8006-21.
16. Liu Y, Gu YC, Zhang XY, Wang W, Cheng MM. Lightweight salient object detection via hierarchical visual perception learning. IEEE Trans Cybern. 2020;51:4439-49.
17. Liu Y, Zhang XY, Bian JW, Zhang L, Cheng MM. SAMNet: stereoscopically attentive multi-scale network for lightweight salient object detection. IEEE Trans Image Process. 2021;30:3804-14.
18. Howard AG, Zhu M, Chen B, et al. Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv 2017;arXiv: 1704.01861. Available from: https://doi.org/10.48550/arXiv.1704.04861. [accessed 23 December 2024].
19. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. Mobilenetv2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2018. pp. 4510–20. Available from: https://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html. [accessed 23 December 2024].
20. Zhang X, Zhou X, Lin M, Sun J. Shufflenet: an extremely efficient convolutional neural network for mobile devices. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2018 Jun 18-23; Salt Lake City, USA. IEEE; 2018. pp. 6848–56.
21. Ma N, Zhang X, Zheng HT, Sun J. ShuffleNet V2: practical guidelines for efficient CNN architecture design. In: Proceedings of the European conference on computer vision (ECCV); 2018. pp. 122-38.
22. Jia N, Sun Y, Liu X. TFGNet: traffic salient object detection using a feature deep interaction and guidance fusion. IEEE Trans Intell Transp Syst. 2023;25:3020-30.
23. Cheng MM, Mitra NJ, Huang X, Torr PH, Hu SM. Global contrast based salient region detection. IEEE Trans Pattern Anal Mach Intell. 2014;37:569-82.
24. Wang L, Lu H, Ruan X, Yang MH. Deep networks for saliency detection via local estimation and global search. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2015 Jun 07-12; Boston, USA. IEEE; 2015. pp. 3183–92.
25. Zhang P, Wang D, Lu H, Wang H, Ruan X. Amulet: aggregating multi-level convolutional features for salient object detection. In: 2017 IEEE International Conference on Computer Vision (ICCV); 2017 Oct 22-29; Venice, Italy. IEEE; 2017. pp. 202–11.
26. Chen Z, Xu Q, Cong R, Huang Q. Global context-aware progressive aggregation network for salient object detection. Proc AAAI conf Artif Intell. 2020;34:10599-606.
27. Huang K, Tian C, Su J, Lin JCW. Transformer-based cross reference network for video salient object detection. Pattern Recogn Lett. 2022;160:122-7.
28. Li Y, Ma J. A swin transformer-based asymmetrical network for light field salient object detection. In: 5th International Conference on Information Science, Electrical, and Automation Engineering (ISEAE 2023). 2023. pp. 171–6.
29. Han S, Pool J, Tran J, Dally WJ. Learning both weights and connections for efficient neural network. In: Proceedings of the 28th International Conference on Neural Information Processing Systems. 2015. pp. 1135-43. Available from: https://dl.acm.org/doi/10.5555/2969239.2969366. [Last accessed on 23 Dec 2024].
30. Courbariaux M, Bengio Y, David JP. BinaryConnect: training deep neural networks with binary weights during propagations. In: Proceedings of the 28th International Conference on Neural Information Processing Systems. 2015. pp. 3123-31. Available from: https://dl.acm.org/doi/10.5555/2969442.2969588. [Last accessed on 23 Dec 2024].
31. Huang Z, Wang N. Like what you like: knowledge distill via neuron selectivity transfer. arXiv 2017;arXiv: 1707.01219. Available from: https://doi.org/10.48550/arXiv.1707.01219. [accessed 23 December 2024].
32. Tan M, Le Q. Efficientnet: rethinking model scaling for convolutional neural networks. In: Proceedings of the 36th International Conference on Machine Learning. PMLR; 2019. pp. 6105–14. Available from: https://proceedings.mlr.press/v97/tan19a.html?ref=jina-ai-gmbh.ghost.io. [Last accessed on 23 Dec 2024].
33. Tan M, Le Q. Efficientnetv2: smaller models and faster training. In: Proceedings of the 36th International Conference on Machine Learning. PMLR; 2021. pp. 10096–106. Available from: https://proceedings.mlr.press/v139/tan21a.html. [Last accessed on 23 Dec 2024].
34. Han K, Wang Y, Tian Q, Guo J, Xu C, Xu C. Ghostnet: more features from cheap operations. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2020 Jun 13-19; Seattle, USA. IEEE; 2020. pp. 1580–9.
35. Wang Z, Zhang Y, Liu Y, Zhu D, Coleman SA, Kerr D. Elwnet: an extremely lightweight approach for real-time salient object detection. IEEE Trans Circuits Syst Video Technol. 2023;33:6404-17.
36. Sreelakshmi K, Akarsh S, Vinayakumar R, Soman KP. Capsule neural networks and visualization for segregation of plastic and non-plastic wastes. In: 2019 5th international conference on advanced computing & communication systems (ICACCS); 2019 Mar 15-16; Coimbatore, India. IEEE; 2019. pp. 631–6.
37. Hinton GE, Sabour S, Frosst N. Matrix capsules with EM routing. In: International conference on learning representations; 2018. Available from: https://openreview.net/forum?id=HJWLfGWRb&. [Last accessed on 23 Dec 2024].
38. Saqur R, Vivona S. Capsgan: using dynamic routing for generative adversarial networks. In: Advances in Computer Vision: Proceedings of the 2019 Computer Vision Conference (CVC). Springer; 2020. pp. 511–25.
39. Cheng X, He J, He J, Xu H. Cv-CapsNet: complex-valued capsule network. IEEE Access. 2019;7:85492-9.
41. Liu Y, Dong X, Zhang D, Xu S. Deep unsupervised part-whole relational visual saliency. Neurocomputing. 2024;563:126916.
42. Zhang Q, Duanmu M, Luo Y, Liu Y, Han J. Engaging part-whole hierarchies and contrast cues for salient object detection. IEEE Trans Circuits Syst Video Technol. 2021;32:3644-58.
43. Liu Y, Zhou L, Wu G, Xu S, Han J. Tcgnet: type-correlation guidance for salient object detection. IEEE Trans Intell Transp Syst. 2023;25:6633-44.
44. Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2017 Jul 21-26; Honolulu, USA. IEEE; 2017. pp. 2881–90.
45. Wang L, Lu H, Wang Y, Feng M, Wang D, Yin B. Learning to detect salient objects with image-level supervision. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2017 Jul 21-26; Honolulu, USA. IEEE; 2017. pp. 136–45.
46. Yang C, Zhang L, Lu H, Ruan X, Yang MH. Saliency detection via graph-based manifold ranking. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition; 2013 Jun 23-28; Portland, USA. IEEE; 2013. pp. 3166–73.
47. Yan Q, Xu L, Shi J, Jia J. Hierarchical saliency detection. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition; 2013 Jun 23-28; Portland, USA. IEEE; 2013. pp. 1155–62.
48. Li Y, Hou X, Koch C, Rehg JM, Yuille AL. The secrets of salient object segmentation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition; 2014 Jun 23-28; Columbus, USA. IEEE; 2014. pp. 280–7.
49. Li G, Yu Y. Visual saliency based on multiscale deep features. IEEE Trans Image Process. 2016;25:5012-24.
50. Movahedi V, Elder JH. Design and perceptual validation of performance measures for salient object segmentation. In: 2010 IEEE computer society conference on computer vision and pattern recognition-workshops; 2010 Jun 13-18; San Francisco, USA. IEEE; 2010. pp. 49–56.
51. Wu Z, Su L, Huang Q. Cascaded partial decoder for fast and accurate salient object detection. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2019 Jun 15-20; Long Beach, USA. IEEE; 2019. pp. 3907–16.
52. Qin X, Zhang Z, Huang C, Dehghan M, Zaiane OR, Jagersand M. U2-Net: going deeper with nested U-structure for salient object detection. Pattern Recognit. 2020;106:107404.
53. Zhang P, Wang D, Lu H, Wang H, Yin B. Learning uncertain convolutional features for accurate saliency detection. In: 2017 IEEE International Conference on Computer Vision (ICCV); 2017 Oct 22-29; Venice, Italy. IEEE; 2017. pp. 212–21.
54. Hou Q, Cheng MM, Hu X, Borji A, Tu Z, Torr PHS. Deeply supervised salient object detection with short connections. IEEE Trans Pattern Anal Mach Intell. 2019;41:815-28.
55. Qin X, Zhang Z, Huang C, Gao C, Dehghan M, Jagersand M. BASNet: boundary-aware salient object detection. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2019 Jun 15-20; Long Beach, USA. IEEE; 2019. pp. 7479–89.
56. Liu JJ, Hou Q, Cheng MM, Feng J, Jiang J. A simple pooling-based design for real-time salient object detection. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2019 Jun 15-20; Long Beach, USA. IEEE; 2019. pp. 3917–26.
57. Liu N, Zhang N, Wan K, Shao L, Han J. Visual saliency transformer. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV); 2021 Oct 10-17; Montreal, Canada. IEEE; 2021. pp. 4722–32.
58. Ma M, Xia C, Li J. Pyramidal feature shrinking for salient object detection. In: Proceedings of the AAAI conference on artificial intelligence. 2021. pp. 2311–8.
59. Zhuge M, Fan DP, Liu N, Zhang D, Xu D, Shao L. Salient object detection via integrity learning. IEEE Trans Pattern Anal Mach Intell. 2022;45:3738-52.
60. Wang Y, Wang R, Fan X, Wang T, He X. Pixels, regions, and objects: multiple enhancement for salient object detection. In: 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2023 Jun 17-24; Vancouver, Canada. IEEE; 2023. pp. 10031–40.
61. Han C, Li G, Liu Z. Two-stage edge reuse network for salient object detection of strip steel surface defects. IEEE Trans Instrum Meas. 2022;71:1-12.