REFERENCES
1. Arents J, Greitans M. Smart industrial robot control trends, challenges and opportunities within manufacturing. Appl Sci 2022;12:937.
2. Lee CC, Qin S, Li Y. Does industrial robot application promote green technology innovation in the manufacturing industry? Technol Forecast Soc 2022;183:121893.
3. Li Z, Li S, Luo X. An overview of calibration technology of industrial robots. IEEE/CAA J Autom Sin 2021;8:23-36.
4. Kim J, Croft EA. Online near time-optimal trajectory planning for industrial robots. Robot Cim Int Manuf 2019;58:158-71.
5. Ji H, Jin H. Application of multi-strategy improved sparrow algorithm in trajectory location of underwater telescopic boom. Mach Tool Hydraul 2023;51:50-6.
6. Wu P, Wang Z, Jing H, Zhao P. Optimal time - jerk trajectory planning for delta parallel robot based on improved butterfly optimization algorithm. Appl Sci 2022;12:8145.
7. Zuo G, Li M, Zheng B. Optimal trajectory planning for robotic arms based on an improved adaptive multiobjective particle swarm algorithm. Exp Technol Manag 2024;41:184-91.
8. Zhang X, Liu J, Li Y. An obstacle avoidance algorithm for space hyper-redundant manipulators using combination of RRT and shape control method. Robotica 2022;40:1036-69.
9. Rybus T. Point-to-point motion planning of a free-floating space manipulator using the rapidly-exploring random trees (RRT) method. Robotica 2020;38:957-82.
10. Mizuno N, Ohno K, Hamada R, et al. Enhanced path smoothing based on conjugate gradient descent for firefighting robots in petrochemical complexes. Adv Robot 2019;33:687-98.
11. Hsu HK, Huang HP, Huang MB. A real-time optimal energy-saving walking pattern generator based on gradient descent method and linear quadratic control. Adv Robot 2019;33:487-507.
12. Lu S, Ding B, Li Y. Minimum-jerk trajectory planning pertaining to a translational 3-degree-of-freedom parallel manipulator through piecewise quintic polynomials interpolation. Adv Mech Eng 2020;12:1687814020913667.
13. Long Z, Li X, Shuai T, Wen F, Feng W, Liang C. Review of research state of trajectory planning for industrial robots. Mech Sci Technol Aerosp Eng 2021;40:853-62.
14. Jiang L, Liu S, Cui Y, Jiang H. Path planning for robotic manipulator in complex multi-obstacle environment based on improved_RRT. IEEE/ASME T Mech 2022;27:4774-85.
15. Dadgar M, Jafari S, Hamzeh A. A PSO-based multi-robot cooperation method for target searching in unknown environments. Neurocomputing 2016;177:62-74.
16. Qin QX, Liang ZY, Xu Y. Image encryption algorithm based on logistic-tent chaotic mapping and bit plane J Dalian Minzu Univ 2022. pp. 245-52. Available from: https://xueshu.baidu.com/usercenter/paper/show?paperid=1g2b0080ce780gh0dt5g0md0f1413195&site=xueshu_se&hitarticle=1. [Last accessed on 28 Dec 2024]
17. Nickabadi A, Mehdi Ebadzadeh M, Safabakhsh R. A novel particle swarm optimization algorithm with adaptive inertia weight. Appl Soft Comput 2011;11:3658-70.
18. Pluhacek M, Senkerik R, Davendra D, Kominkova Oplatkova Z, Zelinka I. On the behavior and performance of chaos driven PSO algorithm with inertia weight. Comput Math Appl 2013;66:122-34.
19. Dhiman G, Kaur A. STOA: a bio-inspired based optimization algorithm for industrial engineering problems. Eng Appl Artif Intell 2019;82:148-74.
20. Mirjalili S. SCA: a sine cosine algorithm for solving optimization problems. Knowl Based Syst 2016;96:120-33.
21. Li J, Li C, Chen T, Zhang Y. Improved RRT algorithm for AUV target search in unknown 3D environment. J Mar Sci Eng 2022;10:826.