REFERENCES
1. Wang Z, Lei Z. Analysis of influence factors of rail corrugation in small radius curve track. Mech Sci 2021;12:31-40.
2. Cui X, Li J, Bao P, Yang Z, Ren Z, Xu X. Investigation into the abnormal phenomenon of rail corrugation superposition in small-radius curve section of intercity railway. Transport Res Rec 2023;2677:540-55.
3. Wang Z, Lei Z, Zhao Y, Xu Y. Rail corrugation characteristics of cologne egg fastener section in small radius curve. Shock Vib 2020;2020:1-12.
4. Wang QA, Huang XY, Wang JF, et al. Concise historic overview of rail corrugation studies: from formation mechanisms to detection methods. Buildings 2024;14:968.
5. Jin F, Xiao H, Nadakatti MM, Yue H, Liu W. Field investigation and rapid deterioration analysis of heavy haul corrugation. Appl Sci 2021;11:6317.
6. Bai T, Xu J, Wang K, et al. Investigation on the transient rolling contact behaviour of corrugated rail considering material work hardening. Eng Fail Anal 2023;153:107575.
7. Wang W, Sun Q, Zhao Z, et al. Novel coil transducer induced thermoacoustic detection of rail internal defects towards intelligent processing. IEEE Trans Ind Electron 2024;71:2100-11.
8. Andrade AR, Stow J. Statistical modelling of wear and damage trajectories of railway wheelsets. Qual Reliab Eng Int 2016;32:2909-23.
9. Cui XL, Chen GX, Yang HG, Zhang Q, Ouyang H, Zhu MH. Study on rail corrugation of a metro tangential track with Cologne-egg type fasteners. Int J Veh Mech Mobil 2016;54:353-69.
10. Hu J, Weng L, Gao Z, Yang B. State of health estimation and remaining useful life prediction of electric vehicles based on real-world driving and charging data. IEEE Trans Veh Technol 2023;72:382-94.
11. Zhang Y, Xin Y, Liu Z, Chi M, Ma G. Health status assessment and remaining useful life prediction of aero-engine based on BiGRU and MMoE. Reliab Eng Syst Safe 2022;220:108263.
12. Wang Q, Song Y, Zhang X, et al. Evolution of corrosion prediction models for oil and gas pipelines: from empirical-driven to data-driven. Eng Fail Anal 2023;146:107097.
13. Ji A, Woo WL, Wong EWL, Quek YT. Rail track condition monitoring: a review on deep learning approaches. Intell Robot 2021;1:151-75.
14. Xiao B, Liu J, Zhang Z. A heavy-haul railway corrugation diagnosis method based on WPD-ASTFT and SVM. Shock Vib 2022;2022:1-14.
15. He J, Xiao Z, Zhang C. Predicting the remaining useful life of rails based on improved deep spiking residual neural network. Proc Saf Environ Prot 2024;188:1106-17.
16. Yang H, He J, Liu Z, Zhang C. LLD-MFCOS: a multiscale anchor-free detector based on label localization distillation for wheelset tread defect detection. IEEE Trans Instrum Meas 2024;73:1-15.
17. Wu JY, Wu M, Chen Z, Li XL, Yan R. Degradation-aware remaining useful life prediction with LSTM autoencoder. IEEE Trans Instrum Meas 2021;70:1-10.
18. Zheng X, Zhao Y, Peng B, Ge M, Kong Y, Zheng S. Information filtering unit-based long short-term memory network for industrial soft sensor modeling. IEEE Sens J 2024;24:13530-44.
19. Galassi A, Lippi M, Torroni P. Attention in natural language processing. IEEE Trans Neur Net Learn Syst 2021;32:4291-308.
20. He Y, Wang W, Li M, Wang Q. A short-term wind power prediction approach based on an improved dung beetle optimizer algorithm, variational modal decomposition, and deep learning. Comput Electr Eng 2024;116:109182.
21. Zhang C, Jiang C, Liu J, Yang W, He J. Degradation trend prediction of rail stripping for heavy haul railway based on multi-strategy hybrid improved pelican algorithm. Intell Robot 2023;3:647-65.
22. Liu J, Du D, He J, Zhang C. Prediction of remaining useful life of railway tracks based on DMGDCC-GRU hybrid model and transfer learning. IEEE Trans Veh Technol 2024;73:7561-75.
23. Xiang L, Yang X, Hu A, Su H, Wang P. Condition monitoring and anomaly detection of wind turbine based on cascaded and bidirectional deep learning networks. Appl Energ 2022;305:117925.
24. Liang H, Cao J, Zhao X. Multi-sensor data fusion and bidirectional-temporal attention convolutional network for remaining useful life prediction of rolling bearing. Meas Sci Technol 2023;34:105126.
25. Ye Z, Yu J. Feature extraction of gearbox vibration signals based on multi-channels weighted convolutional neural network. J Mech Eng 2021;57:110-20.
26. Qiao FJ, Li B, Gao MQ, Li JJ. ECG signal classification based on adaptive multi-channel weighted neural network. Neural Netw World 2022;32:55-72.
27. Li S, Zhang C, Zhang X. A novel spatiotemporal enhanced convolutional autoencoder network for unsupervised health indicator construction. IEEE Trans Instrum Meas 2024;73:1-10.
28. Chen L, Xu G, Zhang S, Yan W, Wu Q. Health indicator construction of machinery based on end-to-end trainable convolution recurrent neural networks. J Manuf Syst 2020;54:1-11.
29. Lei Y, Li N, Guo L, Li N, Yan T, Lin J. Machinery health prognostics: a systematic review from data acquisition to RUL prediction. Mech Syst Signal Proc 2018;104:799-834.
30. Yu X, Deng L, Tang B, Xia Y, Li Q. Gear degradation trend prediction by meta-learning gated recurrent unit networks under few samples. J Mech Eng 2022;58:149-56.
31. Jiao L, Chen J, Liu L. Degradation trend prediction of rolling bearings based on CAE and AGRU. Shock Vib 2023;42:109-17. Available from: https://jvs.sjtu.edu.cn/EN/Y2023/V42/I12/109. [Last accessed on 14 Oct 2024].
32. Sarmadi H, Entezami A, Saeedi Razavi B, Yuen KV. Ensemble learning-based structural health monitoring by Mahalanobis distance metrics. Struct Control Health Monit 2020;28:e2663.
33. Wang Y, Deng L, Zheng L, Gao RX. Temporal convolutional network with soft thresholding and attention mechanism for machinery prognostics. J Manuf Syst 2021;60:512-26.
34. Li X, Ma X, Xiao F, Xiao C, Wang F, Zhang S. Time-series production forecasting method based on the integration of bidirectional gated recurrent unit (Bi-GRU) network and sparrow search algorithm (SSA). J Petrol Sci Eng 2022;208:109309.
35. Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. arXiv. [Preprint.] Aug 2, 2023[accessed on 2024 Oct 14]. Available from: https://doi.org/10.48550/arXiv.1706.03762.
36. Abdel-Basset M, Mohamed R, Abouhawwash M. Crested porcupine optimizer: a new nature-inspired metaheuristic. Knowl Based Syst 2024;284:111257.
37. Ge Z, Feng S, Ma C, Dai X, Wang Y, Ye Z. Urban river ammonia nitrogen prediction model based on improved whale optimization support vector regression mixed synchronous compression wavelet transform. Chemometr Intell Lab Syst 2023;240:104930.
38. Li M, Liu Z, Song H. An improved algorithm optimization algorithm based on RungeKutta and golden sine strategy. Expert Syst Appl 2024;247:123262.
39. Zhai X, Tian J, Li J. A real-time path planning algorithm for mobile robots based on safety distance matrix and adaptive weight adjustment strategy. Int J Control Autom Syst 2024;22:1385-99.
41. Ouyang C, Qiu Y, Zhu D. Adaptive spiral flying sparrow search algorithm. Sci Program 2021;2021:1-16.
42. Su H, Zhao D, Heidari AA, et al. RIME: a physics-based optimization. Neurocomp 2023;532:183-214.
44. Xue J, Shen B. Dung beetle optimizer: a new meta-heuristic algorithm for global optimization. J Supercomput 2023;79:7305-36.
45. Zhao Z, Yun S, Jia L, et al. Hybrid VMD-CNN-GRU-based model for short-term forecasting of wind power considering spatio-temporal features. Eng Appl Artif Intel 2023;121:105982.
46. Xiong B, Lou L, Meng X, Wang X, Ma H, Wang Z. Short-term wind power forecasting based on attention mechanism and deep learning. Electr Pow Syst Res 2022;206:107776.
47. Xiang L, Liu J, Yang X, Hu A, Su H. Ultra-short term wind power prediction applying a novel model named SATCN-LSTM. Energ Convers Managem 2022;252:115036.
48. Yang H, Liu J, Mei G, Yang D, Deng X, Duan C. Research on real-time detection method of rail corrugation based on improved ShuffleNet V2. Eng Appl Artif Intel 2023;126:106825.