REFERENCES

1. Aceto G, Persico V, Pescapé A. A Survey on information and communication technologies for industry 4.0: state-of-the-art, taxonomies, perspectives, and challenges. IEEE Commun Surv Tutorials 2019;21:3467-501.

2. Griffiths F, Ooi M. The fourth industrial revolution - industry 4.0 and IoT [trends in future I&M]. IEEE Instrum Meas Mag 2018;21:29-43.

3. Chen J, Sun J, Wang G. From unmanned systems to autonomous intelligent systems. Engineering 2022;12:16-9.

4. Chen B, Sun D, Zhou J, Wong W, Ding Z. A future intelligent traffic system with mixed autonomous vehicles and human-driven vehicles. Inform Sci 2020;529:59-72.

5. Reis J, Cohen Y, Melão N, Costa J, Jorge D. High-tech defense industries: developing autonomous intelligent systems. Appl Sci 2021;11:4920.

6. Liu X, Wang C, Kong X, Zhang Y, Wang W, Lee KY. Tube-based distributed MPC for load frequency control of power system with high wind power penetration. IEEE Trans Power Syst 2024;39:3118-29.

7. Christofides PD, Scattolini R, de La Peña DM, Liu J. Distributed model predictive control: a tutorial review and future research directions. Comput Chem Eng 2013;51:21-41.

8. Li S, Yang L, Gao Z. Distributed optimal control for multiple high-speed train movement: an alternating direction method of multipliers. Automatica 2020;112:108646.

9. Qin D, Wu J, Liu A, Zhang WA, Yu L. Cooperation and coordination transportation for nonholonomic mobile manipulators: a distributed model predictive control approach. IEEE T Syst Man Cy S 2023;53:848-60.

10. Mozaffari M, Saad W, Bennis M, Nam YH, Debbah M. A tutorial on UAVs for wireless networks: applications, challenges, and open problems. IEEE Commun Surv Tutorials 2019;21:2334-60.

11. Hayat S, Yanmaz E, Muzaffar R. Survey on unmanned aerial vehicle networks for civil applications: a communications viewpoint. IEEE Commun Surv Tutorials 2016;18:2624-61.

12. Hassanalian M, Abdelkefi A. Classifications, applications, and design challenges of drones: a review. Prog Aerosp Sci 2017;91:99-131.

13. Jia D, Lu K, Wang J, Zhang X, Shen X. A survey on platoon-based vehicular cyber-physical systems. IEEE Commun Surv Tutorials 2016;18:263-84.

14. Xiao L, Gao F. Practical string stability of platoon of adaptive cruise control vehicles. IEEE T Intell Transp Syst 2011;12:1184-94.

15. Zheng Y, Eben Li S, Wang J, Cao D, Li K. Stability and scalability of homogeneous vehicular platoon: study on the influence of information flow topologies. IEEE T Intell Transp Syst 2016;17:14-26.

16. Babayomi O, Zhang Z, Dragicevic T, Hu J, Rodriguez J. Smart grid evolution: predictive control of distributed energy resources - a review. Int J Elec Power 2023;147:108812.

17. Moreno-Castro J, Ocaña Guevara VS, León Viltre LT, Gallego Landera Y, Cuaresma Zevallos O, Aybar-Mejía M. Microgrid management strategies for economic dispatch of electricity using model predictive control techniques: a review. Energies 2023;16:5935.

18. Razmi D, Babayomi O, Davari A, Rahimi T, Miao Y, Zhang Z. Review of model predictive control of distributed energy resources in microgrids. Symmetry 2022;14:1735.

19. Arauz T, Chanfreut P, Maestre JM. Cyber-security in networked and distributed model predictive control. Annu Rev Control 2022;53:338-55.

20. Yu S, Hirche M, Huang Y, Chen H, Allgöwer F. Model predictive control for autonomous ground vehicles: a review. Auton Intell Syst 2021;1:4.

21. Negenborn RR, Maestre JM. Distributed model predictive control: an overview and roadmap of future research opportunities. IEEE Control Syst Mag 2014;34:87-97.

22. Rodriguez J, Garcia C, Mora A, et al. Latest advances of model predictive control in electrical drives - Part I: basic concepts and advanced strategies. IEEE Trans Power Electron 2022;37:3927-42.

23. Zhang K, Shi Y. Adaptive model predictive control for a class of constrained linear systems with parametric uncertainties. Automatica 2020;117:108974.

24. Jiang Y, Oravec J, Houska B, Kvasnica M. Parallel MPC for linear systems with input constraints. IEEE T Automat Contr 2021;66:3401-8.

25. Zhou Y, Li D, Xi Y, Gao F. Event-triggered distributed robust model predictive control for a class of nonlinear interconnected systems. Automatica 2022;136:110039.

26. Wabersich KP, Zeilinger MN. A predictive safety filter for learning-based control of constrained nonlinear dynamical systems. Automatica 2021;129:109597.

27. Köhler J, Soloperto R, Müller MA, Allgöwer F. A computationally efficient robust model predictive control framework for uncertain nonlinear systems. IEEE T Automat Contr 2021;66:794-801.

28. Sun Q, Chen J, Shi Y. Integral-type event-triggered model predictive control of nonlinear systems with additive disturbance. IEEE T Cybernetics 2021;51:5921-9.

29. Köhler J, Kötting P, Soloperto R, Allgöwer F, Müller MA. A robust adaptive model predictive control framework for nonlinear uncertain systems. Int J Robust Nonlin 2021;31:8725-49.

30. Xu S, Peng H. Design, analysis, and experiments of preview path tracking control for autonomous vehicles. IEEE Trans Intell Transp Syst 2020;21:48-58.

31. Berberich J, Köhler J, Müller MA, Allgöwer F. Linear tracking MPC for nonlinear systems - Part Ⅱ: the data-driven case. IEEE T Automat Contr 2022;67:4406-21.

32. Dong Z, Angeli D. Homothetic tube-based robust economic MPC with integrated moving horizon estimation. IEEE T Automat Contr 2021;66:64-75.

33. Berberich J, Köhler J, Müller MA, Allgöwer F. Data-driven model predictive control with stability and robustness guarantees. IEEE T Automat Contr 2021;66:1702-17.

34. Bongard J, Berberich J, Köhler J, Allgöwer F. Robust stability analysis of a simple data-driven model predictive control approach. IEEE T Automat Contr 2023;68:2625-37.

35. Köhler J, Müller MA, Allgöwer F. Analysis and design of model predictive control frameworks for dynamic operation - an overview. Annu Rev Control 2024;57:100929.

36. Li H, Frei RJ, Wensing PM. Model hierarchy predictive control of robotic systems. IEEE Robot Autom Lett 2021;6:3373-80.

37. Gold T, Völz A, Graichen K. Model predictive interaction control for robotic manipulation tasks. IEEE T Robot 2023;39:76-89.

38. Rohr D, Studiger M, Stastny T, Lawrance NRJ, Siegwart R. Nonlinear model predictive velocity control of a VTOL tiltwing UAV. IEEE Robot Autom Lett 2021;6:5776-83.

39. Niu S, Luo Y, Fu W, Zhang X. Robust model predictive control for a three-phase PMSM motor with improved control precision. IEEE T Ind Electron 2021;68:838-49.

40. Maestre JM, Negenborn RR. Distributed model predictive control made easy. 1st ed. Springer; 2014.

41. Stewart BT, Venkat AN, Rawlings JB, Wright SJ, Pannocchia G. Cooperative distributed model predictive control. Syst Control Lett 2010;59:460-9.

42. Maestre JM, Muñoz de la Peña D, Camacho EF. Distributed model predictive control based on a cooperative game. Optim Contr Appl Met 2011;32:153-76.

43. Müller MA, Reble M, Allgöwer F. Cooperative control of dynamically decoupled systems via distributed model predictive control. Int J Robust Nonlin 2012;22:1376-97.

44. Mayne DQ, Seron MM, Raković SV. Robust model predictive control of constrained linear systems with bounded disturbances. Automatica 2005;41:219-24.

45. Dunbar WB. Distributed receding horizon control of dynamically coupled nonlinear systems. IEEE Trans Automat Contr 2007;52:1249-63.

46. Li H, Shi Y. Robust distributed model predictive control of constrained continuous-time nonlinear systems: a robustness constraint approach. IEEE T Automat Contr 2014;59:1673-8.

47. Wei H, Zhang K, Shi Y. Self-triggered min-max DMPC for asynchronous multiagent systems with communication delays. IEEE Trans Ind Informat 2022;18:6809-17.

48. Zou Y, Su X, Li S, Niu Y, Li D. Event-triggered distributed predictive control for asynchronous coordination of multi-agent systems. Automatica 2019;99:92-8.

49. Campo PJ, Morari M. Robust model predictive control. In: 1987 American Control Conference; 1987 Jun 10-12; Minneapolis, USA. IEEE; 1987. pp. 1021–6. Available from: https://ieeexplore.ieee.org/document/9612050. [Last accessed on 13 Sep 2024].

50. Jia D, Krogh B. Min-max feedback model predictive control for distributed control with communication. In: Proceedings of the 2002 American Control Conference (IEEE Cat. No. CH37301); 2002 May 08-10; Anchorage, USA. IEEE; 2002. pp. 4507-12.

51. Langson W, Chryssochoos I, Raković SV, Mayne DQ. Robust model predictive control using tubes. Automatica 2004;40:125-33.

52. Li Z, Xu H, Lin Z, Chen X, Ma C. Robust self-triggered DMPC for linear discrete-time systems with local and global constraints. J Franklin I 2023;360:527-54.

53. Li L, Shi P, Ahn CK, Kim YJ, Xing W. Tube-based model predictive full containment control for stochastic multiagent systems. IEEE T Automat Contr 2023;68:4024-37.

54. Li S, Ye D, Xiao Y, Sun Z. Robust distributed model predictive control for satellite cluster reconfiguration with collision avoidance. Aerosp Sci Technol 2022;130:107917.

55. Yang R, Zhang H, Feng G, Yan H, Wang Z. Robust cooperative output regulation of multi-agent systems via adaptive event-triggered control. Automatica 2019;102:129-36.

56. Zhan J, Jiang ZP, Wang Y, Li X. Distributed model predictive consensus with self-triggered mechanism in general linear multiagent systems. IEEE Trans Ind Inform 2019;15:3987-97.

57. Mi X, Zou Y, Li S, Karimi HR. Self-triggered DMPC design for cooperative multiagent systems. IEEE Trans Ind Electron 2020;67:512-20.

58. Wang T, Kang Y, Li P, Zhao YB, Tang H. Rolling self-triggered distributed MPC for dynamically coupled nonlinear systems. Automatica 2024;160:111444.

59. Yang Y, Xu H, Yao X. Disturbance rejection self-triggered distributed MPC with adaptive prediction horizon for asynchronous multiagent systems. IEEE T Syst Man Cy S 2024;54:2797-809.

60. Velarde P, Maestre JM, Ishii H, Negenborn RR. Vulnerabilities in Lagrange-based distributed model predictive control. Optim Contr Appl Met 2018;39:601-21.

61. Ananduta W, Maestre JM, Ocampo-Martinez C, Ishii H. Resilient distributed energy management for systems of interconnected microgrids. In: 2018 IEEE Conference on Decision and Control (CDC); 2018 Dec 17-19; Miami, USA. IEEE; 2018. pp. 3159–64.

62. Dai Y, Li M, Zhang K, Shi Y. Robust and resilient distributed MPC for cyber-physical systems against DoS attacks. IEEE T Ind Cyber Phys Syst 2023;1:44-55.

63. Chen J, Sun Z, Zhang H. Event-triggering in distributed MPC of decoupled nonlinear systems against DoS attacks. In: 2022 IEEE 5th International Conference on Industrial Cyber-Physical Systems (ICPS); 2022 May 24-26; Coventry, UK. IEEE; 2022. p. 1–6.

64. Wei H, Zhang K, Zhang H, Shi Y. Resilient and constrained consensus against adversarial attacks: a distributed MPC framework. Automatica 2024;160:111417.

65. Hahn J, Stursberg O. Robust distributed MPC for disturbed affine systems using predictions of time-varying communication. In: 2019 18th European Control Conference (ECC); 2019 Jun 25-28; Naples, Italy. IEEE; 2019. pp. 56–62.

66. Su Y, Shi Y, Sun C. Distributed model predictive control for tracking consensus of linear multiagent systems with additive disturbances and time-varying communication delays. IEEE T Cybernetics 2021;51:3813-23.

67. Wang M, Zhao C, Xia J, Sun J. Periodic event-triggered robust distributed model predictive control for multiagent systems with input and communication delays. IEEE Trans Ind Informat 2023;19:11216-28.

68. Franzè G, Casavola A, Famularo D, Lucia W. Distributed receding horizon control of constrained networked leader-follower formations subject to packet dropouts. IEEE Trans Contr Syst Technol 2018;26:1798-809.

69. Yang H, Zhao H, Xia Y, Zhang J. Event-triggered active MPC for nonlinear multiagent systems with packet losses. IEEE T Cybernetics 2021;51:3093-102.

70. Shakhatreh H, Sawalmeh AH, Al-Fuqaha A, et al. Unmanned aerial vehicles (UAVs): a survey on civil applications and key research challenges. IEEE Access 2019;7:48572-634.

71. Mohsan SAH, Khan MA, Noor F, Ullah I, Alsharif MH. Towards the unmanned aerial vehicles (UAVs): a comprehensive review. Drones 2022;6:147.

72. Wang H, Cheng H, Hao H. The use of unmanned aerial vehicle in military operations. In: International Conference on Man-Machine-Environment System Engineering. Springer; 2020. pp. 939–45.

73. Poole JD. Product development process for small unmanned aerial systems. 2019. Available from: https://api.semanticscholar.org/CorpusID:201872196. [Last accessed on 13 Sep 2024].

74. Bo N, Li X, Dai J, Tang J. A hierarchical optimization strategy of trajectory planning for multi-UAVs. In: 2017 9th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC); 2017 Aug 26-27; Hangzhou, China. IEEE; 2017. pp. 294–8.

75. Qi S, Yao P. Persistent tracking of maneuvering target using IMM filter and DMPC by initialization-guided game approach. IEEE Syst J 2019;13:4442-53.

76. Yang C, Liu Z, Zhang W, Yue W. Cooperative online path planning for UAVs based on DMPC and improved grey wolf optimizer. In: 2022 41st Chinese Control Conference (CCC); 2022 Jul 25-27; Hefei, China. IEEE; 2022. pp. 5008–13.

77. Hu C, Meng Z, Qu G, Shin HS, Tsourdos A. Distributed cooperative path planning for tracking ground moving target by multiple fixed-wing UAVs via DMPC-GVD in urban environment. Int J Control Autom 2021;19:823-36.

78. Yu Y, Wang H, Liu S, et al. Distributed multi-agent target tracking: a nash-combined adaptive differential evolution method for UAV systems. IEEE T Veh Technol 2021;70:8122-33.

79. Gräfe A, Eickhoff J, Trimpe S. Event-triggered and distributed model predictive control for guaranteed collision avoidance in UAV swarms. IFAC Pap OnLine 2022;55:79-84.

80. Li X, Wang Y, Yin H, Zhuang X, Li X. Adaptive guidance method based on distributed MPC of UAV cluster for unknown environment exploration. In: International Conference on Autonomous Unmanned Systems. Springer; 2022. pp. 2556–66.

81. Zheng J, Ding M, Sun L, Liu H. Distributed stochastic algorithm based on enhanced genetic algorithm for path planning of multi-UAV cooperative area search. IEEE T Intell Transp 2023;24:8290-303.

82. Chai S, Yang Z, Huang J, Li X, Zhao Y, Zhou D. Cooperative UAV search strategy based on DMPC-AACO algorithm in restricted communication scenarios. Def Technol 2024;31:295-311.

83. Richards A, How J. Decentralized model predictive control of cooperating UAVs. In: 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No. 04CH37601); 2004 Dec 14-17; Nassau, Bahamas. IEEE; 2004. pp. 4286–91.

84. Zhang B, Sun X, Liu S, Deng X. Adaptive differential evolution-based distributed model predictive control for multi-UAV formation flight. Int J Aeronaut Space Sci 2020;21:538-48.

85. Chi P, Zhang X, Wu K, Zheng L, Zhao J, Wang Y. Distributed formation control and collision avoidance for heterogeneous UAV swarm. In: International Conference on Guidance, Navigation and Control. Springer; 2022. pp. 1837–48.

86. Zhou SL, Kang YH, Shi XJ, Dai SW, Zhou C. Autonomous reconfiguration control method for multi-UAV formation based on RQPSO-DMPC. J Beijing Univ Aeronaut Astronaut 2017;43:1960-71.

87. Chen Q, Jin Y, Xiao Z, Yan T, Qi Y. Distributed formation control of multi UAV with finite time convergence based on MPC. In: International Conference on Guidance, Navigation and Control. Springer; 2022. pp. 1301–12.

88. Wen Y, Du Z, Han F, Wang J, Zhang J. Formation control of multiple unmanned aerial vehicles based on two-layer controller of model predictive control algorithm. In: 2023 IEEE International Conference on Unmanned Systems (ICUS); 2023 Oct 13-15; Hefei, China. IEEE; 2023. pp. 1543–9.

89. Yuan Q, Li X. Distributed model predictive formation control for a group of UAVs with spatial kinematics and unidirectional data transmissions. IEEE Trans Network Sci Eng 2023;10:3209-22.

90. Li X, Bo N, Dai J. Study on collision avoidance path planning for multi-UAVs based on model predictive control. J Northwest Polytech Univ 2017;35:513–22. Available from: https://www.researchgate.net/publication/318909119_Study_on_Collision_Avoidance_Path_Planning_for_Multi-UAVs_Based_on_Model_Predictive_Control. [Last accessed on 13 Sep 2024].

91. Niu Z, Jia X, Yao W. Communication-free MPC-based neighbors trajectory prediction for distributed multi-UAV motion planning. IEEE Access 2022;10:13481-9.

92. Sun T, Sun W, Wu J. Improved quatre solution for UAV formation rapid assembly. In: International Conference on Autonomous Unmanned Systems. Springer; 2021. pp. 2047–53.

93. Jiang Y, Hu S, Damaren C, Luo L, Liu B. Trajectory planning with collision avoidance for multiple quadrotor UAVs using DMPC. Int J Aeronaut Space Sci 2023;24:1403-17.

94. Lun Y, Yao P, Wang Y. Trajectory optimization of SUAV for marine vessels communication relay mission. IEEE Syst J 2020;14:5014-24.

95. Ao Z, Zhang Y, Huang J, Lin Y, Zhou X, Zhang Y. Multi-UAV cooperative search planning algorithm based on dynamic target probability model. In: 2023 International Conference on Unmanned Aircraft Systems (ICUAS); 2023 Jun 06-09; Warsaw, Poland. IEEE; 2023. pp. 543–48.

96. Yin D, Yang X, Wang C, Yu H, Chen S. A two-layer communication relay planning method for a fixed-wing UAVs swarm. IEEE T Veh Technol 2024;73:7140-56.

97. Luis CE, Vukosavljev M, Schoellig AP. Online trajectory generation with distributed model predictive control for multi-robot motion planning. IEEE Robot Autom Lett 2020;5:604-11.

98. Soria E, Schiano F, Floreano D. Predictive control of aerial swarms in cluttered environments. Nat Mach Intell 2021;3:545-54.

99. Du J, Zhang F, Mao H, Liu H, Yang J. Game theory based multi-UAV cooperative searching model and fast solution approach. J Shanghai Jiaotong Univ 2013;47:667-73. Available from: https://xuebao.sjtu.edu.cn/EN/Y2013/V47/I04/667. [Last accessed on 13 Sep 2024].

100. Yao P, Wang X, Yi K. Optimal search for marine target using multiple unmanned aerial vehicles. In: 2018 37th Chinese Control Conference (CCC); 2018 Jul 25-27; Wuhan, China. IEEE; 2018. pp. 4552–6.

101. Ru C, Wei R, Dai J, Shen D, Zhang L. Autonomous reconfiguration control method for UAV's formation based on Nash bargain. Acta Autom Sin 2013;39:1349-59.

102. Bian L, Sun W, Sun T. Trajectory following and improved differential evolution solution for rapid forming of UAV formation. IEEE Access 2019;7:169599-613.

103. Zhao J, Sun J, Cai Z, Wang Y, Wu K. Distributed coordinated control scheme of UAV swarm based on heterogeneous roles. Chinese J Aeronaut 2022;35:81-97.

104. Liu SS, Ge MF, Liu ZW. Multi-UAV formation control based on distributed model predictive control. In: 2022 IEEE International Conference on Cyborg and Bionic Systems (CBS); 2023 Mar 24-26; Wuhan, China. IEEE; 2023. pp. 292–7.

105. Wehbeh J, Rahman S, Sharf I. Distributed model predictive control for UAVs collaborative payload transport. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2020 Oct 24 - 2021 Jan 24; Las Vegas, USA. IEEE; 2020. pp. 11666–72.

106. Gao Y, Bai C, Zhang L, Quan Q. Multi-UAV cooperative target encirclement within an annular virtual tube. Aerosp Sci Technol 2022;128:107800.

107. Marasco AJ, Givigi SN, Rabbath CA. Model predictive control for the dynamic encirclement of a target. In: 2012 American Control Conference (ACC); 2012 Jun 27-29; Montreal, Canada. IEEE; 2012. pp. 2004–9.

108. Hafez AT, Marasco AJ, Givigi SN, Beaulieu A, Rabbath CA. Encirclement of multiple targets using model predictive control. In: 2013 American Control Conference; 2013 Jun 17-19; Washington, USA. IEEE; 2013. pp. 3147–52.

109. Tang J, Lao S, Wan Y. Systematic review of collision-avoidance approaches for unmanned aerial vehicles. IEEE Syst J 2022;16:4356-67.

110. D'Amato E, Mattei M, Notaro I. Distributed reactive model predictive control for collision avoidance of unmanned aerial vehicles in civil airspace. J Intell Robot Syst 2020;97:185-203.

111. Lesch V, Breitbach M, Segata M, Becker C, Kounev S, Krupitzer C. An overview on approaches for coordination of platoons. IEEE T Intell Transp 2022;23:10049-65.

112. Shladover SE, Desoer CA, Hedrick JK, et al. Automated vehicle control developments in the PATH program. IEEE Trans Veh Technol 1991;40:114-30.

113. Tsugawa S, Kato S, Aoki K. An automated truck platoon for energy saving. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2011 Sep 25-30; San Francisco, USA. IEEE; 2011. pp. 4109–14.

114. Li SE, Zheng Y, Li K, Wang J. An overview of vehicular platoon control under the four-component framework. In: 2015 IEEE Intelligent Vehicles Symposium (IV); 2015 Jun 28 - Jul 01; Seoul, Korea. IEEE; 2015. pp. 286–91.

115. Zheng Y, Li SE, Li K, Borrelli F, Hedrick JK. Distributed model predictive control for heterogeneous vehicle platoons under unidirectional topologies. IEEE Trans Contr Syst Technol 2017;25:899-910.

116. Maxim A, Caruntu CF, Lazar C. Cruise and headway control for vehicle platooning using a distributed model predictive control algorithm. In: 2017 21st International Conference on System Theory, Control and Computing (ICSTCC); 2017 Oct 19-21; Sinaia, Romania. IEEE; 2017. pp. 146–51.

117. Lu L, He D, Yu S, Dong S. Distributed predictive control for string stability of heterogonous vehicle platoons with multiple communication topologies. In: 2019 Chinese Control Conference (CCC); 2019 Jul 27-30; Guangzhou, China. IEEE; 2019. pp. 2930–5.

118. Ma W, Yan M, Zuo L. Output feedback distributed model predictive control for heterogeneous vehicle platoon. In: 2018 Chinese Automation Congress (CAC); 2018 Nov 30 - Dec 02; Xi'an, China. IEEE; 2018. pp. 2814–9.

119. Qiang Z, Dai L, Chen B, Xia Y. Distributed model predictive control for heterogeneous vehicle platoon with inter-vehicular spacing constraints. IEEE T Intell Transp 2023;24:3339-51.

120. Yu S, Chen H, Feng Y, et al. Nash optimality based distributed model predictive control for vehicle platoon. IFAC Pap OnLine 2020;53:6610-5.

121. Liu P, Kurt A, Ozguner U. Distributed model predictive control for cooperative and flexible vehicle platooning. IEEE Trans Contr Syst Technol 2019;27:1115-28.

122. Bai W, Xu B, Liu H, Qin Y, Xiang C. Coordinated control of CAVs for platooning under a parallel distributed model predictive control framework. In: 2022 41st Chinese Control Conference (CCC); 2022 Jul 25-27; Hefei, China. IEEE; 2022. pp. 5377–82.

123. Zhan J, Hua Z, Zhang L. Cooperative predictive control for arbitrarily mixed vehicle platoons with guaranteed global optimality. IET Intell Trans Syst 2023;17:1702-14.

124. Maxim A, Pauca O, Caruntu CF, Lazar C. Distributed model predictive control algorithm with time-varying communication delays for a CACC vehicle platoon. In: 2020 24th International Conference on System Theory, Control and Computing (ICSTCC); 2020 Oct 08-10; Sinaia, Romania. IEEE; 2020. pp. 775–80.

125. Yan M, Ma W, Zuo L, Yang P. Distributed model predictive control for platooning of heterogeneous vehicles with multiple constraints and communication delays. J Adv Transp 2020;2020:1-16.

126. Qiang Z, Dai L, Chen B, Li K, Xia Y. Distributed model predictive control for heterogeneous vehicle platoon with unknown input of leading vehicle. Transport Res C Emer 2023;155:104312.

127. Luo Q, Nguyen AT, Fleming J, Zhang H. Unknown input observer based approach for distributed tube-based model predictive control of heterogeneous vehicle platoons. IEEE T Veh Technol 2021;70:2930-44.

128. Ju Z, Zhang H, Tan Y. Distributed stochastic model predictive control for heterogeneous vehicle platoons subject to modeling uncertainties. IEEE Intel Transp Sy 2022;14:25-40.

129. Yin J, Shen D, Du X, Li L. Distributed stochastic model predictive control with Taguchi's robustness for vehicle platooning. IEEE T Intell Transp 2022;23:15967-79.

130. Luo Z, Zhu B, Zheng J, Zheng Z. Robust distributed model predictive control for formation tracking of nonholonomic vehicles. IEEE/CAA J Autom Sin 2024;11:560-2.

131. Chen J, Wei H, Zhang H, Shi Y. Asynchronous self-triggered stochastic distributed MPC for cooperative vehicle platooning over vehicular Ad-Hoc networks. IEEE Trans Veh Technol 2023;72:14061-73.

132. Mousavi SMA, Moshiri B, Heshmati Z. On the distributed path planning of multiple autonomous vehicles under uncertainty based on model-predictive control and convex optimization. IEEE Syst J 2021;15:3759-68.

133. Huang Y, Liu GP, Yu Y, Hu W. Data-driven distributed predictive tracking control for heterogeneous nonlinear multi-agent systems with communication delays. IEEE T Automat Contr 2024;69:4786-92.

134. Zheng Y, Zhang T, Li S, Qi C, Zhang Y, Wang Y. Data-driven distributed model predictive control of continuous nonlinear systems with Gaussian process. Ind Eng Chem Res 2022;61:18187-202.

135. Kohler M, Berberich J, Müller MA, Allgower F. Data-driven distributed MPC of dynamically coupled linear systems. IFAC Pap OnLine 2022;55:365-70.

136. Wu Y, Zuo Z, Wang Y, Han Q, Hu C. Distributed data-driven model predictive control for heterogeneous vehicular platoon with uncertain dynamics. IEEE Trans Veh Technol 2023;72:9969-83.

137. Zhan J, Ma Z, Zhang L. Data-driven modeling and distributed predictive control of mixed vehicle platoons. IEEE T Intell Vehicl 2023;8:572-82.

138. Pauca O, Maxim A, Caruntu CF. Control architecture for cooperative autonomous vehicles driving in platoons at highway speeds. IEEE Access 2021;9:153472-90.

139. Xu M, Luo Y, Kong W, Li K. A distributed model predictive control method combined with delay compensator for multiple vehicle platoons. IET Intell Transp Sy 2023;17:357-72.

140. Mohseni F, Frisk E, Nielsen L. Distributed cooperative MPC for autonomous driving in different traffic scenarios. IEEE Trans Intell Vehicl 2021;6:299-309.

141. Liu H, Zhuang W, Yin G, Tang Z, Xu L. Strategy for heterogeneous vehicular platoons merging in automated highway system. In: 2018 Chinese Control And Decision Conference (CCDC); 2018 Jun 09-11; Shenyang, China. IEEE; 2018. pp. 2736–40.

142. Gratzer AL, Thormann S, Schirrer A, Jakubek S. String stable and collision-safe model predictive platoon control. IEEE T Intell Transp 2022;23:19358-73.

143. Franzè G, Lucia W, Venturino A. A distributed model predictive control strategy for constrained multi-vehicle systems moving in unknown environments. IEEE Trans Intell Vehicl 2021;6:343-52.

144. Chen J, Zhang H, Yin G. Distributed dynamic event-triggered secure model predictive control of vehicle platoon against DoS attacks. IEEE T Veh Technol 2023;72:2863-77.

145. Lyu H, Wang T, Cheng R, Ge H. Improved longitudinal control strategy for connected and automated truck platoon against cyberattacks. IET Intell Trans Syst 2022;16:1710-25.

146. Zeng H, Ye Z, Zhang D, Lu Q. Robust distributed model predictive control of connected vehicle platoon against DoS attacks. Intell Robot 2023;3:288-305.

147. Franzè G, Tedesco F, Famularo D. Resilience against replay attacks: a distributed model predictive control scheme for networked multi-agent systems. IEEE/CAA J Autom Sin 2021;8:628-40.

148. Li Z, Xu H, Lin Z, Dong L, Chen Y. Event-triggered robust distributed output feedback model predictive control for nonlinear MASs against false data injection attacks. ISA T 2023;141:197-211.

149. Zeng H, Ye Z, Zhang D. Dynamic event-triggering-based distributed model predictive control of heterogeneous connected vehicle platoon under DoS attacks. ISA T 2024;153:1-12.

150. Riverso S, Boem F, Ferrari-Trecate G, Parisini T. Plug-and-play fault detection and control-reconfiguration for a class of nonlinear large-scale constrained systems. IEEE T Automat Contr 2016;61:3963-78.

151. Sun Q, Shi Y. Model predictive control as a secure service for cyber-physical systems: a cloud-edge framework. IEEE Internet Things 2022;9:22194-203.

152. Sivianes M, Maestre JM, Zafra-Cabeza A, Bordons C. Blockchain for energy trading in energy communities using stochastic and distributed model predictive control. IEEE Trans Contr Syst Technol 2023;31:2132-45.

153. Alexandru AB, Morari M, Pappas GJ. Cloud-based MPC with encrypted data. In: 2018 IEEE Conference on Decision and Control (CDC); 2018 Dec 17-19; Miami, USA. IEEE; 2018; pp. 5014–9.

154. Nofer M, Gomber P, Hinz O, Schiereck D. Blockchain. Bus Inf Syst Eng 2017;59:183-7.

155. Willems JC, Rapisarda P, Markovsky I, De Moor BLM. A note on persistency of excitation. Syst Control Lett 2005;54:325-9.

156. Alonso CA, Yang F, Matni N. Data-driven distributed and localized model predictive control. IEEE Open J Control Syst 2022;1:29-40.

157. Yan Y, Bao J, Huang B. Distributed data-driven predictive control via dissipative behavior synthesis. IEEE T Automat Contr 2024;69:2899-914.

158. Huang Y, Liu GP, Yu Y, Hu W. Data-driven distributed predictive control for voltage regulation and current sharing in DC microgrids with communication constraints. IEEE T Cybernetics 2024;54:4998-5011.

159. Li D, De Schutter B. Distributed model-free adaptive predictive control for urban traffic networks. IEEE Trans Contr Syst Technol 2022;30:180-92.

160. Fawcett RT, Amanzadeh L, Kim J, Ames AD, Hamed KA. Distributed data-driven predictive control for multi-agent collaborative legged locomotion. In: 2023 IEEE International Conference on Robotics and Automation (ICRA); 2023 May 29 - Jun 02; London, UK. IEEE; 2023. pp. 9924–30.

161. Gros S, Zanon M. Data-driven economic NMPC using reinforcement learning. IEEE T Automat Contr 2020;65:636-48.

162. Kordabad AB, Zanon M, Gros S. Equivalence of optimality criteria for markov decision process and model predictive control. IEEE T Automat Contr 2024;69:1149-56.

163. Mallick S, Airaldi F, Dabiri A, De Schutter B. Multi-agent reinforcement learning via distributed MPC as a function approximator. Automatica 2024;167:111803.

164. Liu Q, Li S, Zheng Y, Qi C, Luo M. Learning-based distributed model predictive control approximation scheme with guarantees. IEEE Trans Ind Informat 2024;20:5308-17.

165. Chen J, Xu G, Zhou Z. Data-driven learning-based model predictive control for energy-intensive systems. Adv Eng Inform 2023;58:102208.

166. Wang G, Bi J, Jia QS, Qiao J, Wang L. Event-driven model predictive control with deep learning for wastewater treatment process. IEEE Trans Ind Informat 2023;19:6398-407.

167. Chen K, Lin J, Qiu Y, Liu F, Song Y. Model predictive control for wind farm power tracking with deep learning-based reduced order modeling. IEEE Trans Ind Informat 2022;18:7484-93.

168. Salzmann T, Kaufmann E, Arrizabalaga J, Pavone M, Scaramuzza D, Ryll M. Real-time neural MPC: deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robot Autom Lett 2023;8:2397-404.

169. Yin X, Zhao X. Deep neural learning based distributed predictive control for offshore wind farm using high-fidelity LES data. IEEE Trans Ind Electron 2021;68:3251-61.

170. D'Alfonso L, Giannini F, Franzè G, Fedele G, Pupo F, Fortino G. Autonomous vehicle platoons in urban road networks: a joint distributed reinforcement learning and model predictive control approach. IEEE/CAA J Automat Sin 2024;11:141-56.

171. Sun S, Romero A, Foehn P, Kaufmann E, Scaramuzza D. A comparative study of nonlinear MPC and differential-flatness-based control for quadrotor agile flight. IEEE Trans Robot 2022;38:3357-73.

172. Chen Y, Bruschetta M, Picotti E, Beghi A. MATMPC - a MATLAB based toolbox for real-time nonlinear model predictive control. In: 2019 18th European Control Conference (ECC); 2019 Jun 25-28; Naples, Italy. IEEE; 2019. pp. 3365–70.

173. Andersson JAE, Gillis J, Horn G, Rawlings JB, Diehl M. CasADi: a software framework for nonlinear optimization and optimal control. Math Prog Comp 2019;11:1-36.

174. Patne V, Ingole D, Sonawane D. FPGA implementation framework for low latency nonlinear model predictive control. IFAC Pap OnLine 2020;53:7020-5.

175. Xu F, Guo Z, Chen H, Ji D, Qu T. A custom parallel hardware architecture of nonlinear model-predictive control on FPGA. IEEE Trans Ind Electron 2022;69:11569-79.

176. Nguyen K, Schoedel S, Alavilli A, Plancher B, Manchester Z. TinyMPC: model-predictive control on resource-constrained microcontrollers. In: 2024 IEEE International Conference on Robotics and Automation (ICRA); 2024 May 13-17; Yokohama, Japan. IEEE; 2024. p. 1–7.

177. Wang P, Deng H, Zhang J, Wang L, Zhang M, Li Y. Model predictive control for connected vehicle platoon under switching communication topology. IEEE T Intell Transp 2022;23:7817-30.

178. Lan J, Zhao D. Min-max model predictive vehicle platooning with communication delay. IEEE Trans Veh Technol 2020;69:12570-84.

179. Subramanian L, Debusschere V, Gooi HB, Hadjsaid N. A distributed model predictive control framework for grid-friendly distributed energy resources. IEEE Trans Sustain Energy 2021;12:727-38.

180. Lindqvist B, Mansouri SS, Agha-mohammadi A, Nikolakopoulos G. Nonlinear MPC for collision avoidance and control of UAVs with dynamic obstacles. IEEE Robot Automat Lett 2020;5:6001-8.

181. Batkovic I, Gupta A, Zanon M, Falcone P. Experimental validation of safe MPC for autonomous driving in uncertain environments. IEEE Trans Control Syst Technol 2023;31:2027-42.

182. Lorenzen M, Allgöwer F, Dabbene F, Tempo R. Scenario-based stochastic MPC with guaranteed recursive feasibility. In: 2015 54th IEEE Conference on Decision and Control (CDC); 2015 Dec 15-18; Osaka, Japan. IEEE; 2015. pp. 4958–63.

183. Tran AT, Muraleedharan A, Okuda H, Suzuki T. Scenario-based stochastic MPC for vehicle speed control considering the interaction with pedestrians. IFAC Pap OnLine 2020;53:15325-31.

184. Schuurmans M, Katriniok A, Meissen C, Tseng HE, Patrinos P. Safe, learning-based MPC for highway driving under lane-change uncertainty: a distributionally robust approach. Artif Intell 2023;320:103920.

185. Ramezani M, Habibi H, Sanchez-Lopez JL, Voos H. UAV Path planning employing MPC-reinforcement learning method considering collision avoidance. In: 2023 International Conference on Unmanned Aircraft Systems (ICUAS); 2023 Jun 06-09; Warsaw, Poland. IEEE; 2023. pp. 507–14.

Intelligence & Robotics
ISSN 2770-3541 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/