REFERENCES

1. Sharafutdinov D, Griguletskii M, Kopanev P, et al. Comparison of modern open-source visual SLAM approaches. J Intell Robot Syst 2023;107:43.

2. Cai D, Li R, Hu Z, Lu J, Li S, Zhao Y. A comprehensive overview of core modules in visual SLAM framework. Neurocomputing 2024;590:127760.

3. Deng T, Chen Y, Zhang L, et al. Compact 3d gaussian splatting for dense visual slam. arXiv. [Preprint.] Mar 17, 2024[accessed 2024 Aug 27]. Available from: https://doi.org/10.48550/arXiv.2403.11247.

4. Matsuki H, Tateno K, Niemeyer M, Tombari F. Newton: neural view-centric mapping for on-the-fly large-scale slam. IEEE Robot Autom Lett 2024;9:3704-11.

5. Yang K, Cheng Y, Chen Z, Wang J. SLAM meets NeRF: a survey of implicit SLAM methods. World Electr Veh J 2024;15:85.

6. Chen B, Zhong X, Xie H, et al. SLAM-RAMU: 3D LiDAR-IMU lifelong SLAM with relocalization and autonomous map updating for accurate and reliable navigation. Ind Robot 2024;51:219-35.

7. Leonardi M, Stahl A, Brekke EF, Ludvigsen M. UVS: underwater visual SLAM-a robust monocular visual SLAM system for lifelong underwater operations. Auton Robots 2023;47:1367-85.

8. Al-Mouhamed MA, Khan AH, Mohammad N. A review of CUDA optimization techniques and tools for structured grid computing. Computing 2020;102:977-1003.

9. Ortiz J, Pupilli M, Leutenegger S, Davison AJ. Bundle adjustment on a graph processor. arXiv. [Preprint.] Mar 30, 2020[accessed 2024 Aug 27]. Available from: https://arxiv.org/abs/2003.03134.

10. Dally WJ, Keckler SW, Kirk DB. Evolution of the graphics processing unit (GPU). IEEE Micro 2021;41:42-51.

11. Gao H, Hu M, Liu Y. Learning driver-irrelevant features for generalizable driver behavior recognition. IEEE Trans Intell Trans Syst 2024:1-13.

12. Xue W, Wang H, Roy CJ. CPU-GPU heterogeneous code acceleration of a finite volume Computational Fluid Dynamics solver. Future Gener Comput Syst 2024;158:367-77.

13. Wang X, Li Q, Lin Z. On the comparison of mono visual odometry front end in low texture environment. In: 2020 3rd International Conference on Mechatronics, Robotics and Automation (ICMRA); 2020 Oct 16-18; Shanghai, China. IEEE; 2020. pp. 195-200.

14. Ferrer G, Iarosh D, Kornilova A. Eigen-factors an alternating optimization for back-end plane SLAM of 3D point clouds. arXiv. [Preprint.] Sep 4, 2023[accessed 2024 Aug 27]. Available from: https://arxiv.org/abs/2304.01055.

15. Zheng S, Wang J, Rizos C, Ding W, El-Mowafy A. Simultaneous localization and mapping (SLAM) for autonomous driving: concept and analysis. Remote Sens 2023;15:1156.

16. Liu K, Cao M. Dlc-slam: a robust lidar-slam system with learning-based denoising and loop closure. IEEE/ASME Trans Mechatron 2023;28:2876-84.

17. Mur-Artal R, Tardós JD. ORB-SLAM2: an open-source SLAM system for monocular, stereo and RGB-D cameras. IEEE Trans Robot 2017;33:1255-62.

18. Campos C, Elvira R, Rodríguez JJG, Montiel JMM, Tardós JD. Orb-slam3: an accurate open-source library for visual, visual-inertial, and multimap SLAM. IEEE Trans Robot 2021;37:1874-90.

19. Mohammadi MS, Rezaeian M. Towards affordable computing: SiftCU a simple but elegant GPU-based implementation of SIFT. Int J Comput Appl 2014;90:30-7.

20. Parker C, Daiter M, Omar K, Levi G, Hassner T. The CUDA LATCH binary descriptor: because sometimes faster means better. arXiv. [Preprint.] Sep 16, 2016[accessed 2024 Aug 27]. Available from: https://doi.org/10.48550/arXiv.1609.03986.

21. Urban S, Hinz S. Multicol-SLAM-a modular real-time multi-camera SLAM system. arXiv. [Preprint.] Oct 24, 2016[accessed 2024 Aug 27]. Available from: https://doi.org/10.48550/arXiv.1610.07336.

22. Li J, Deng G, Zhang W, Zhang C, Wang F, Liu Y. Realization of CUDA-based real-time multi-camera visual SLAM in embedded systems. J Real-Time Image Process 2020;17:713-27.

23. Ma T, Bai N, Shi W, et al. Research on the application of visual SLAM in embedded GPU. Wirel Commun Mob Comput 2021;2021:6691262.

24. Nagy B, Foehn P, Scaramuzza D. Faster than FAST: GPU-accelerated frontend for high-speed VIO. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2020 Oct 24 - 2021 Jan 24; Las Vegas, NV, USA. IEEE; 2020. pp. 4361-8.

25. Zheng M, Zhou S, Xiong X, Zhu J. GPU parallel bundle block adjustment. Cehui Xuebao/Acta Geod Cartogr Sin 2017;46:1193-201.

26. Lu Q, Xu J, Hu L, Shi M. Parallel VINS-Mono algorithm based on GPUs in embedded devices. Int J Adv Robot Syst 2022;19:17298814221074534.

27. Cao M, Zheng L, Jia W, Liu X. Fast incremental structure from motion based on parallel bundle adjustment. J Real-Time Image Process 2021;18:379-92.

28. Jiang F, Gu J, Zhu S, Li T, Zhong X. Visual odometry based 3D-reconstruction. J Phys Conf Ser 2021;1961:012074.

29. Qin T, Li P, Shen S. VINS-Mono: a robust and versatile monocular visual-inertial state estimator. IEEE Trans Robot 2018;34:1004-20.

30. Sun H, Zhang Y, Zheng Y, Luo J, Pan Z. G2O-Pose: real-time monocular 3D human pose estimation based on general graph optimization. Sensors 2022;22:8335.

31. Sumikura S, Shibuya M, Sakurada K. OpenVSLAM: a versatile visual SLAM framework. In: Proceedings of the 27th ACM International Conference on Multimedia. New York, NY, USA: Association for Computing Machinery; 2019. pp. 2292-5.

Intelligence & Robotics
ISSN 2770-3541 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/