REFERENCES

1. Patre BM, Londhe PS, Waghmare LM, Mohan S. Disturbance estimator based non-singular fast fuzzy terminal sliding mode control of an autonomous underwater vehicle. Ocean Eng 2018;159:372-87.

2. Zhang Z, Shi Y, Zhang Z, Yan W. New results on sliding-mode control for takagi - sugeno fuzzy multiagent systems. IEEE Trans Cybern 2019;49:1592-604.

3. Gao Z, Guo G. Fixed-time sliding mode formation control of AUVs based on a disturbance observer. IEEE/CAA J Autom Sinica 2020;7:539-45.

4. Peng Z, Wang J, Wang J. Constrained control of autonomous underwater vehicles based on command optimization and disturbance estimation. IEEE Trans Ind Electron 2019;66:3627-35.

5. Long L, Wang Z, Zhao J. Switched adaptive control of switched nonlinearly parameterized systems with unstable subsystems. Automatica 2015;54:217-28.

6. He S, Dai S, Luo F. Asymptotic trajectory tracking control with guaranteed transient behavior for MSV with uncertain dynamics and external disturbances. IEEE Trans Ind Electron 2019;66:3712-20.

7. Lin C, Wang H, Yuan J, Yu D, Li C. An improved recurrent neural network for unmanned underwater vehicle online obstacle avoidance. Ocean Eng 2019;189:106327.

8. Wang J, Wang C, Wei Y, Zhang C. Command filter based adaptive neural trajectory tracking control of an underactuated underwater vehicle in three-dimensional space. Ocean Eng 2019;180:175-86.

9. Ding L, Li S, Liu Y, Gao H, Chen C, Deng Z. Adaptive neural network-based tracking control for full-state constrained wheeled mobile robotic system. IEEE Trans Syst Man Cybern Syst 2017;47:2410-9.

10. Xu B, Zhang R, Li S, He W, Shi Z. Composite neural learning-based nonsingular terminal sliding mode control of MEMS gyroscopes. IEEE Trans Neural Netw Learn Syst 2020;31:1375-86.

11. He W, Yin Z, Sun C. Adaptive neural network control of a marine vessel with constraints using the asymmetric barrier lyapunov function. IEEE Trans Cybern 2017;47:1641-51.

12. Fan H, Tang J, Shi K, Zhao Y. Hybrid impulsive feedback control for drive-response synchronization of fractional-order multi-link memristive neural networks with multi-delays. Fractal Fract 2023;7:495.

13. Dai SL, Wang M, Wang C, Li L. Learning from stable adaptive NN output feedback control of uncertain ship dynamics. In: Proceedings of the 31st Chinese Control Conference; 2012 Jul 25-27; Hefei, China. IEEE; 2012. pp. 5076-81. Available from: https://ieeexplore.ieee.org/document/6390821.[Last accessed on 12 Apr 2024].

14. Zhao Z, He W, Ge SS. Adaptive neural network control of a fully actuated marine surface vessel with multiple output constraints. IEEE Trans Contr Syst Technol 2014;22:1536-43.

15. Dai S, Wang M, Wang C. Neural learning control of marine surface vessels with guaranteed transient tracking performance. IEEE Trans Ind Electron 2016;63:1717-27.

16. He W, Chen Y, Yin Z. Adaptive neural network control of an uncertain robot with full-state constraints. IEEE Trans Cybern 2016;46:620-9.

17. Bechlioulis CP, Karras GC, Heshmati-Alamdari S, Kyriakopoulos KJ. Trajectory tracking with prescribed performance for underactuated underwater vehicles under model uncertainties and external disturbances. IEEE Trans Contr Syst Technol 2017;25:429-40.

18. Elhaki O, Shojaei K. Neural network-based target tracking control of underactuated autonomous underwater vehicles with a prescribed performance. Ocean Eng 2018;167:239-56.

19. Shojaei K, Dolatshahi M. Line-of-sight target tracking control of underactuated autonomous underwater vehicles. Ocean Eng 2017;133:244-52.

20. Shao X, Si H, Zhang W. Fuzzy wavelet neural control with improved prescribed performance for MEMS gyroscope subject to input quantization. Fuzzy Set Syst 2021;411:136-54.

21. Huang B, Zhou B, Zhang S, Zhu C. Adaptive prescribed performance tracking control for underactuated autonomous underwater vehicles with input quantization. Ocean Eng 2021;221:108549.

22. Park BS, Kwon J, Kim H. Neural network-based output feedback control for reference tracking of underactuated surface vessels. Automatica 2017;77:353-9.

23. Zhou J, Wen C, Yang G. Adaptive backstepping stabilization of nonlinear uncertain systems with quantized input signal. IEEE Trans Automat Contr 2014;59:460-4.

24. Chen L, Cui R, Yang C, Yan W. Adaptive neural network control of underactuated surface vessels with guaranteed transient performance: theory and experimental results. IEEE Trans Ind Electron 2020;67:4024-35.

25. Yoo SJ, Park BS. Guaranteed performance design for distributed bounded containment control of networked uncertain underactuated surface vessels. J Frank Inst 2017;354:1584-602.

26. Zhong Y, Weng L, Xu L. Adaptive sliding mode trajectory tracking control of incomplete symmetry underactuated USV. Ship Sci Technol 2020;42:92-8.

27. Zhang G, Huo X, Liu J, Ma K. Adaptive control with quantized inputs processed by lipschitz logarithmic quantizer. Int J Control Autom Syst 2021;19:921-30.

28. Zhang X, Xu X, Li J, et al. Observer-based H fuzzy fault-tolerant switching control for ship course tracking with steering machine fault detection. ISA Trans 2023;140:32-45.

29. Xiong J, Li J, Du P. A novel non-fragile H fault-tolerant course-keeping control for uncertain unmanned surface vehicles with rudder failures. Ocean Eng 2023;280:114781.

Intelligence & Robotics
ISSN 2770-3541 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/