REFERENCES
1. GBD 2016 Neurology Collaborators. Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2019;18:459–80.
2. Qi S, Yin P, Wang L, et al. Prevalence of Parkinson's disease: a community-based study in China. Mov Disord 2021;36:2940-4.
3. Dorsey ER, Constantinescu R, Thompson JP, et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 2007;68:384-6.
4. Jankovic J. Parkinson's disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 2008;79:368-76.
5. Emamzadeh FN, Surguchov A. Parkinson's disease: biomarkers, treatment, and risk factors. Front Neurosci 2018;12:612.
6. Berardelli A, Rothwell JC, Thompson PD, Hallett M. Pathophysiology of bradykinesia in Parkinson's disease. Brain 2001;124:2131-46.
7. Postuma RB, Berg D, Stern M, et al. MDS clinical diagnostic criteria for Parkinson's disease. Mov Disord 2015;30:1591-601.
8. Goetz CG, Tilley BC, Shaftman SR, et al. Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord 2008;23:2129-70.
9. Post B, Merkus MP, de Bie RMA, de Haan RJ, Speelman JD. Unified Parkinson's disease rating scale motor examination: are ratings of nurses, residents in neurology, and movement disorders specialists interchangeable? Mov Disord 2005;20:1577-84.
10. Das S, Trutoiu L, Murai A, et al. Quantitative measurement of motor symptoms in Parkinson's disease: a study with full-body motion capture data. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2011 Aug 30 - Sep 03; Boston, USA. IEEE; 2011. pp. 6789–92.
11. Mentzel TQ, Mentzel CL, Mentzel SV, Lieverse R, Daanen HAM, van Harten PN. Instrumental assessment of bradykinesia: a comparison between motor tasks. IEEE J Biomed Health Inform 2016;20:521-6.
12. Zheng YL, Ding XR, Poon CCY, et al. Unobtrusive sensing and wearable devices for health informatics. IEEE Trans Biomed Eng 2014;61:1538-54.
13. Kim JW, Lee JH, Kwon Y, et al. Quantification of bradykinesia during clinical finger taps using a gyrosensor in patients with Parkinson's disease. Med Biol Eng Comput 2011;49:365-71.
14. Djurić-Jovičić M, Jovičić NS, Roby-Brami A, Popović MB, Kostić VS, Djordjević AR. Quantification of finger-tapping angle based on wearable sensors. Sensors 2017;17:203.
15. Patel S, Lorincz K, Hughes R, et al. Monitoring motor fluctuations in patients with Parkinson's disease using wearable sensors. IEEE Trans Inf Technol Biomed 2009;13:864-73.
16. Wahid F, Begg RK, Hass CJ, Halgamuge S, Ackland DC. Classification of Parkinson's disease gait using spatial-temporal gait features. IEEE J Biomed Health Inform 2015;19:1794-802.
17. Yin Z, Geraedts VJ, Wang Z, Contarino MF, Dibeklioglu H, van Gemert J. Assessment of Parkinson's disease severity from videos using deep architectures. IEEE J Biomed Health Inform 2022;26:1164-76.
18. Hssayeni MD, Jimenez-Shahed J, Burack MA, Ghoraani B. Ensemble deep model for continuous estimation of Unified Parkinson's Disease Rating Scale Ⅲ. Biomed Eng Online 2021;20:32.
19. Petitjean F, Ketterlin A, Gançarski P. A global averaging method for dynamic time warping, with applications to clustering. Pattern Recognit 2011;44:678-93.
20. Iglesias G, Talavera E, BGonzález-Prieto Á, Mozo A, Gómez-Canaval S. Data augmentation techniques in time series domain: a survey and taxonomy. Neural Comput Appl 2023;35:10123-45.
22. Kim JW, Kwon Y, Kim YM, et al. Analysis of lower limb bradykinesia in Parkinson's disease patients. Geriatr Gerontol Int 2012;12:257-64.
23. Zhang X, Gao Y, Lin J, Lu CT. Tapnet: multivariate time series classification with attentional prototypical network. Proc AAAI Conf Artif Intell 2020;34:6845-52.
25. Martinez-Manzanera O, Roosma E, Beudel M, Borgemeester RWK, van Laar T, Maurits NM. A method for automatic and objective scoring of bradykinesia using orientation sensors and classification algorithms. IEEE Trans Biomed Eng 2016;63:1016-24.
26. Shima K, Tsuji T, Kan E, Kandori A, Yokoe M, Sakoda S. Measurement and evaluation of finger tapping movements using magnetic sensors. In: 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2008 Aug 20-25; Vancouver, Canada. IEEE; 2008. pp. 5628–31.
28. Shawen N, O'Brien MK, Venkatesan S, et al. Role of data measurement characteristics in the accurate detection of Parkinson's disease symptoms using wearable sensors. J Neuroeng Rehabil 2020;17:52.
29. Lee WL, Sinclair NC, Jones M, et al. Objective evaluation of bradykinesia in Parkinson's disease using an inexpensive marker-less motion tracking system. Physiol Meas 2019;40:014004.
30. Wu Z, Gu H, Hong R, et al. Kinect-based objective evaluation of bradykinesia in patients with Parkinson's disease. Digit Health 2023;9:20552076231176653.
31. Datta S, Karmakar CK, Palaniswami M. Averaging methods using dynamic time warping for time series classification. In: 2020 IEEE Symposium Series on Computational Intelligence (SSCI); 2020 Dec 01-04; Canberra, Australia. IEEE; 2020. pp. 2794-8.
32. Wang T, Liu Z, Zhang T, Hussain SF, Waqas M, Li Y. Adaptive feature fusion for time series classification. Knowl Based Syst 2022;243:108459.
33. Cheng X, Han P, Li G, Chen S, Zhang H. A novel channel and temporal-wise attention in convolutional networks for multivariate time series classification. IEEE Access 2020;8:212247-57.
34. Williams S, Relton SD, Fang H, et al. Supervised classification of bradykinesia in Parkinson's disease from smartphone videos. Artif Intell Med 2020;110:101966.