REFERENCES

1. Albernaz-Gonçalves R, Olmos G, Hötzel MJ. My pigs are ok, why change? - animal welfare accounts of pig farmers. Animal 2021;15:100154.

2. Menzel A, Beyerbach M, Siewert C, et al. Actinobacillus pleuropneumoniae challenge in swine: diagnostic of lung alterations by infrared thermography. BMC Vet Res 2014;10:199.

3. Tzanidakis C, Simitzis P, Arvanitis K, Panagakis P. An overview of the current trends in precision pig farming technologies. Livest Sci 2021;249:104530.

4. Zhang Z, Zhang H, Liu T. Study on body temperature detection of pig based on infrared technology: a review. Artif Intell Agric 2019;1:14-26.

5. Kammersgaard TS, Malmkvist J, Pedersen LJ. Infrared thermography - a non-invasive tool to evaluate thermal status of neonatal pigs based on surface temperature. Animal 2013;7:2026-34.

6. Qu D, Liu S, Wu J, Li Y. Design and implementation of monitoring system for multiple cows body temperature. Trans Chin Soc Agric Mach 2016;47:408-12. Available from: https://www.researchgate.net/publication/309529158_Design_and_implementation_of_monitoring_system_for_multiple_cows_body_temperature. [Last accessed on 26 Jan 2024].

7. Li Z. Application of a flexible patch online measurement method in pig body temperature measurement. 2018. (in Chinese). Available from: https://www.zhangqiaokeyan.com/academic-degree-domestic_mphd_thesis/02031264442.html. [Last accessed on 26 Jan 2024].

8. He D, Liu C, Xiong H. Design and experiment of implantable sensor and real-time detection system for temperature monitoring of cow. Trans Chin Soc Agric Mach 2018;49:195-202.

9. Hentzen M, Hovden D, Jansen M, van Essen G. Design and validation of a wireless temperature measurement system for laboratory and farm animals. Proc Meas Behav 2012;2012:466-71. Available from: https://archive.measuringbehavior.org/mb2012/files/2012/ProceedingsPDF(website)/Posters/Hentzen_et_al_MB2012.pdf. [Last accessed on 26 Jan 2024].

10. Salles MSV, da Silva SC, Salles FA, et al. Mapping the body surface temperature of cattle by infrared thermography. J Therm Biol 2016;62:63-9.

11. Siewert C, Dänicke S, Kersten S, et al. Difference method for analysing infrared images in pigs with elevated body temperatures. Z Med Phys 2014;24:6-15.

12. Iyasere OS, Edwards SA, Bateson M, Mitchell M, Guy JH. Validation of an intramuscularly-implanted microchip and a surface infrared thermometer to estimate core body temperature in broiler chickens exposed to heat stress. Comput Electron Agric 2017;133:1-8.

13. Giro A, de Campos Bernardi AC, Junior WB, et al. Application of microchip and infrared thermography for monitoring body temperature of beef cattle kept on pasture. J Therm Biol 2019;84:121-8.

14. Lu M, He J, Chen C, et al. An automatic ear base temperature extraction method for top view piglet thermal image. Comput Electron Agric 2018;155:339-47.

15. Zhang Z. Research on body temperature detection method of breeding pigs based on infrared images. 2021. (in Chinese).

16. Symeonaki E, Arvanitis KG, Piromalis D, Tseles D, Balafoutis AT. Ontology-based IoT middleware approach for smart livestock farming toward agriculture 4.0: a case study for controlling thermal environment in a pig facility. Agronomy 2022;12:750.

17. Zheng P, Zhang J, Liu H, Bao J, Xie Q, Teng X. A wireless intelligent thermal control and management system for piglet in large-scale pig farms. Inf Process Agric 2021;8:341-9.

18. Bao J, Xie Q. Artificial intelligence in animal farming: a systematic literature review. J Clean Prod 2022;331:129956.

19. Zin TT, Pwint MZ, Seint PT, et al. Automatic cow location tracking system using ear tag visual analysis. Sensors 2020;20:3564.

20. Zin TT, Misawa S, Pwint MZ, et al. Cow identification system using ear tag recognition. In: 2020 IEEE 2nd Global Conference on Life Sciences and Technologies (LifeTech); 2020 Mar 10-12; Kyoto, Japan. IEEE; 2020. pp. 65-6.

21. Lodkaew T, Pasupa K, Loo CK. CowXNet: an automated cow estrus detection system. Expert Syst Appl 2023;211:118550.

22. Alvarez JR, Arroqui M, Mangudo P, et al. Body condition estimation on cows from depth images using convolutional neural networks. Comput Electron Agric 2018;155:12-22.

23. Zhuang X, Zhang T. Detection of sick broilers by digital image processing and deep learning. Biosyst Eng 2019;179:106-16.

24. Wang Y, Kang X, Chu M, Liu G. Deep learning-based automatic dairy cow ocular surface temperature detection from thermal images. Comput Electron Agric 2022;202:107429.

25. Wang R, Bai Q, Gao R, et al. Oestrus detection in dairy cows by using atrous spatial pyramid and attention mechanism. Biosyst Eng 2022;223:259-76.

26. Zhang X, Kang X, Feng N, Liu G. Automatic recognition of dairy cow mastitis from thermal images by a deep learning detector. Comput Electron Agric 2020;178:105754.

27. Lu Z, Zhao M, Luo J, Wang G, Wang D. Automatic teat detection for rotary milking system based on deep learning algorithms. Comput Electron Agric 2021;189:106391.

28. Jiang B, Wu Q, Yin X, Wu D, Song H, He D. FLYOLOv3 deep learning for key parts of dairy cow body detection. Comput Electron Agric 2019;166:104982.

29. Liu Q. Research on pig temperature inspection technology based on thermal infrared image. 2022. (in Chinese).

30. Ma L, Duan Y, Zong Z, Liu G. Segmentation of thermal infrared image for sow based on improved convex active contours. Trans Chin Soc Agric Mach 2015;46:180-6. (in Chinese).

31. Zhu W, Liu B, Yang J, Ma C. Pig ear area detection based on adapted active shape model. Trans Chin Soc Agric Mach 2015;46:288-95. (in Chinese).

32. Zhou L, Chen Z, Chen D, Yuan Y, Li Y, Zheng J. Pig ear root detection based on adapted otsu. Trans Chin Soc Agric Mach 2016;47:228-32,14. (in Chinese).

33. Huang Y, Xiao D, Liu J, Tan Z, Liu K, Chen M. An improved pig counting algorithm based on YOLOv5 and DeepSORT model. Sensors 2023;23:6309.

34. Terven J, Cordova-Esparza DM. A comprehensive review of YOLO: from YOLOv1 to YOLOv8 and beyond. 2023. Available from: https://www.researchgate.net/publication/369760111_A_Comprehensive_Review_of_YOLO_From_YOLOv1_to_YOLOv8_and_Beyond. [Last accessed on 26 Jan 2024].

35. He K, Zhang X, Ren S, Sun J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans Pattern Anal Mach Intell 2015;37:1904-16.

36. Lin TY, Dollár P, Girshick R, He K, Hariharan B, Belongie S. Feature pyramid networks for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2017 Jul 21-26; Honolulu, USA. IEEE; 2017. pp. 936-44.

37. Liu S, Qi L, Qin H, Shi J, Jia J. Path aggregation network for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2018. pp. 8759-68. Available from: https://openaccess.thecvf.com/content_cvpr_2018/html/Liu_Path_Aggregation_Network_CVPR_2018_paper.html. [Last accessed on 26 Jan 2024].

38. Li X, Wang W, Wu L, et al. Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection. In: Advances in Neural Information Processing Systems Advances in Neural Information Processing Systems. 2020. pp. 21002-12. Available from: https://proceedings.neurips.cc/paper/2020/file/f0bda020d2470f2e74990a07a607ebd9-Paper.pdf. [Last accessed on 26 Jan 2024].

39. Zheng Z, Wang P, Liu W, Li J, Ye R, Ren D. Distance-IoU loss: faster and better learning for bounding box regression. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2020. pp. 12993-3000.

40. Dai J, Qi H, Xiong Y, et al. Deformable convolutional networks. In: 2017 IEEE International Conference on Computer Vision (ICCV); 2017 Oct 22-29; Venice, Italy. IEEE; 2017. pp. 764-73. Available from: https://doi.org/10.1109/ICCV.2017.89. [Last accessed on 26 Jan 2024].

41. Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. arXiv. [Preprint]. Aug 2, 2023. Available from: https://arxiv.org/abs/1706.03762.

42. Zhang YF, Ren W, Zhang Z, Jia Z, Wang L, Tan T. Focal and efficient IOU loss for accurate bounding box regression. Neurocomputing 2022;506:146-57.

Intelligence & Robotics
ISSN 2770-3541 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/