REFERENCES
1. Brunel JF, Charkaluk E, Dufrénoy P, Demilly F. Rolling contact fatigue of railways wheels: influence of steel grade and sliding conditions. Proc Eng 2010;2:2161-9.
2. Pavlík A, Gerlici J, Lack T, Hauser V, Št'astniak P. Prediction of the rail-wheel contact wear of an innovative bogie by simulation analysis. Trans Res Proc 2019;40:855-60.
3. Madge JJ, Leen SB, McColl IR, Shipway PH. Contact-evolution based prediction of fretting fatigue life: effect of slip amplitude. Wear 2007;262:1159-70.
4. Liu Y, Jiang S, Wu YP, Duan ZD, Wang LB. Effects of spallation on rail thermo-elasto-plasticity in wheel-rail sliding contact. Journal of Traffic and Transportation Engineering 2016;16:46-55.
5. Zan XD, Li XT, Xing SB, Zhang YK, Jiang XY. Analysis of rail surface shelling resulting from fatigue crack propagation. Journal of Railway Science and Engineering 2018;15:3082-8.
6. Ma S, Liu X, Ren S, Chen Z, Liu Y. Research on side wear prediction of curve rail in shuohuang heavy haul railway. J Mech Eng 2021;57:118-25.
7. Wang L, Yuan H, Na WB, et al. Optimization of the re-profiling strategy and remaining useful life prediction of wheels based on a datadriven wear model. Systems Engineering-Theory & Practice 2011;31: 1143–1152. (in Chinese). Available from: http://en.cnki.com.cn/Article_en/CJFDTOTAL-XTLL201106020.htm [Last accessed on 20 Nov 2023].
8. Li B, Yang Z, Xing Z, Gao X. Optimization of wheel re-profiling strategy based on a statistical wear model. In: Jia L, Qin Y, Suo J, Feng J, Diao L, An M, editors. Proceedings of the 3rd International Conference on Electrical and Information Technologies for Rail Transportation (EITRT) 2017; Lecture Notes in Electrical Engineering, vol 483. Springer, Singapore.
9. Andrade AR, Stow J. Statistical modelling of wear and damage trajectories of railway wheel sets. Qual Reliab Eng Int 2016;32:2909-23.
10. Han P, Zhang WH. A new binary wheel wear prediction model based on statistical method and the demonstration. Wear 2015;324-325:90-9.
11. Xiang L, Yang X, Hu AJ, Su H, Wang PH. Condition monitoring and anomaly detection of wind turbine based on cascaded and bidirectional deep learning networks. Appl Energy 2022;305:117925.
12. Sun LM, Shang ZQ, Xia Y, Bhowmick S, Nagarajaiah S. Review of bridge structural health monitoring aided by big data and artificial intelligence: from condition assessment to damage detection. J Struct Eng 2020;146:04020073.
13. Cheng QL, Peng B, Li Q, Liu SP. A rolling bearing fault diagnosis model based on WCNN-BiGRU. In: 2021 China Automation Congress(CAC) 2021, pp. 3368-72.
14. Ye YG, Gao H, Huang CH, et al. Computer vision for hunting stability inspection of high-speed trains. Measurement 2023;220:113361.
15. Hu J, Shen L, Albanie S, Sun G, Wu E. Squeeze-and-excitation networks. IEEE Trans Pattern Anal Mach Intell 2023;220:113361.
16. Trojovský P, Dehghani M. Pelican optimization algorithm: a novel nature-inspired algorithm for engineering applications. Sensors 2022:1424-8220.
17. Hu SS, Liu H, Feng YF. Tool wear prediction in flass fiber reinforced polymer small hole drilling based on an improved circle chaotic mapping grey wolf algorithm for BP neural network. Appl Sci 2023:ISBN No. 2076-3417.
18. Liu JS, Yuan MM, Zuo F. Global search-oriented adaptive leader salp swarm algorithm. Contr Dec Contr Dec 2021;36:2152-60.
19. Wu WS. A study on Rényi entropy and Shannon entropy of image segmentation based on finite multivariate skew t distribution mixture model. Math Methods in App Sciences 2021; doi: 10.1002/mma.7996.
20. Deng Y, Qiao L, Zhu JC, Yang B. Mechanical performance and microstructure prediction of hypereutectoid rail steels based on BP neural networks. IEEE Access 2020;8:41905-12.
21. De Simone L, Caputo E, Cinque M, et al. LSTM based failure prediction for railway rollin-g stock equipment. Exp Syst Appl 2023;222:119767.
22. Li YJ, Chen CJ, Sun Q. Application of GRU in Prediction of Subway Wheel Wear. In: 2022 International Conference on Machine Learning and Knowledge Engineering (MLKE) 2022. pp. 212–6.
23. Fan MG, Zheng W. Feature selection for prediction of railway disruption length. In: 2019 IEEE Intelligent Transportation Systems Conference (ITSC); 2019. pp. 351–6.