REFERENCES
1. Li Z, Chen Y, Lu H, Wu H, Cheng L. UAV autonomous landing technology based on apriltags vision positioning algorithm. In: 2019 Chinese Control Conference (CCC); 2019 Jul 27-30; Guangzhou, China. IEEE; 2019. p. 8148-53.
2. Takaya K, Ohta H, Kroumov V, Shibayama K, Nakamura M. Development of UAV system for autonomous power line inspection. In: 2019 23rd International Conference on System Theory, Control and Computing (ICSTCC); 2019 Oct 09-11; Sinaia, Romania. IEEE; 2019. p. 762-7.
3. Siean AI, Vatavu RD, Vanderdonckt J. Taking that perfect aerial photo: a synopsis of interactions for drone-based aerial photography and video. In: Proceedings of the 2021 ACM International Conference on Interactive Media Experiences. 2021. p. 275-9.
4. Reinecke M, Prinsloo T. The influence of drone monitoring on crop health and harvest size. In: 2017 1st International Conference on Next Generation Computing Applications (NextComp); 2017 Jul 19-21; Mauritius. IEEE; 2017. p. 5-10.
5. Gargoum S, El-Basyouny K. Automated extraction of road features using LiDAR data: a review of LiDAR applications in transportation. In: 2017 4th International Conference on Transportation Information and Safety (ICTIS); 2017 Aug 08-10; Banff, Canada. IEEE; 2017. p. 563-74.
6. Zhao S, Fang Z, Li H, Scherer S. A robust laser-inertial odometry and mapping method for large-scale highway environments. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2019 Nov 03-08; Macau, China. IEEE; 2020. p. 1285-92.
7. Dissanayake MWMG, Newman P, Clark S, Durrant-Whyte HF, Csorba M. A solution to the simultaneous localization and map building (SLAM) problem. IEEE Tran Robot Automat 2001;17:229-41.
8. Yuan X, Liu H, Qi R. Research on key technologies of autonomous driving platform. J Phys Conf Ser 2001;1754:012127.
9. Wang H, Wang C, Xie L. Lightweight 3-D localization and mapping for solid-state LiDAR. IEEE Robot Autom Lett 2021;6:1801-7.
10. Zhang J, Singh S. LOAM: lidar odometry and mapping in real-time. In: Proceedings of Robotics: Science and Systems; California, USA. 2014. p. 1-9. Available from: https://www.ri.cmu.edu/pub_files/2014/7/Ji_LidarMapping_RSS2014_v8.pdf. [Last accessed on 21 Nov 2023].
11. Shan T, Englot B. LeGO-LOAM: lightweight and ground-optimized lidar odometry and mapping on variable terrain. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2018 Oct 01-05; Madrid, Spain. IEEE; 2018. p. 4758-65.
12. Xu X, Zhang L, Yang J, et al. A review of multi-sensor fusion SLAM systems based on 3D LIDAR. Remote Sens 2022;14:2835.
13. Ye H, Chen Y, Liu M. Tightly coupled 3D lidar inertial odometry and mapping. In: 2019 International Conference on Robotics and Automation (ICRA), 2019 May 20-24; Montreal, Canada. IEEE; 2019. p. 3144-50.
14. Shan T, Englot B, Meyers D, Wang W, Ratti C, Rus D. LIO-SAM: tightly-coupled lidar inertial odometry via smoothing and mapping. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2020 Oct 24-2021 Jan 24; Las Vegas, USA. IEEE; 2020. p. 5135-42.
15. Xu W, Zhang F. FAST-LIO: a fast, robust LiDAR-inertial odometry package by tightly-coupled iterated Kalman Filter. IEEE Robot Autom Lett 2021;6:3317-24.
16. Wang S, Zhang H, Wang G. OMC-SLIO: online multiple calibrations spinning LiDAR inertial odometry. Sensors 2023;23:248.
17. Harchowdhury A, Kleeman L, Vachhani L. Coordinated nodding of a two-dimensional lidar for dense three-dimensional range measurements. IEEE Robot Autom Lett 2018;3:4108-15.
18. Droeschel D, Holz D, Behnke S. Omnidirectional perception for lightweight MAVs using a continuously rotating 3D laser. Photogramm Fernerkund Geoinform 2014;5:451-64.
19. Bosse M, Zlot R. Continuous 3D scan-matching with a spinning 2D laser. In: 2009 IEEE International Conference on Robotics and Automation; 2009 May 12-17; Kobe, Japan. IEEE; 2009. p. 4312-9.
20. Wang S, Zhang H, Wang G, Liu R, Huo J, Chen B. FGRSC: improved calibration for spinning LiDAR in unprepared scenes. IEEE Sens J 2022;22:14250-62.