REFERENCES

1. Chen C, Zou W, Xiang Z. Event-triggered consensus of multiple uncertain euler-lagrange systems with limited communication range. IEEE Trans Syst Man Cybern, Syst 2023;53:5945-54.

2. Boin C, Lei L, Yang SX. AVDDPG-Federated reinforcement learning applied to autonomous platoon control. Intell Robot 2022;2:145-67.

3. Zhu Z, Pivaro N, Gupta S, Gupta A, Canova M. Safe model-based off-policy reinforcement learning for eco-Driving in connected and automated hybrid electric vehicles. IEEE Trans Intell Veh 2022;7:387-98.

4. Cao Z, Xu S, Jiao X, Peng H, Yang D. Trustworthy safety improvement for autonomous driving using reinforcement learning. Trans Res Part C-Emer Technol 2022;138:103656.

5. Patrol guide. section: Tactical operations. procedure no: 221-15; 2016. Available from: https://www1.nyc.gov/assets/ccrb/downloads/pdf/investigations_pdf/pg221-15-vehicle-pursuits.pdf.

6. Qi Q, Zhang X, Guo X. A Deep Reinforcement Learning Approach for the Pursuit Evasion Game in the Presence of Obstacles. In: 2020 IEEE International Conference on Real-time Computing and Robotics (RCAR). IEEE; 2020. pp. 68–73.

7. Xu B, Wang Y, Wang Z, Jia H, Lu Z. Hierarchically and cooperatively learning traffic signal control. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 35; 2021. pp. 669–77.

8. Li S, Yan Z, Wu C. Learning to delegate for large-scale vehicle routing. Adv Neural Inf Process Syst 2021;34. Available from: https://proceedings.neurips.cc/paper_files/paper/2021/file/dc9fa5f217a1e57b8a6adeb065560b38-Paper.pdf.

9. Garcia E, Casbeer DW, Von Moll A, Pachter M. Multiple pursuer multiple evader differential games. IEEE Trans Automat Contr 2020;66:2345-50.

10. Xu Y, Yang H, Jiang B, Polycarpou MM. Multiplayer pursuit-evasion differential games with malicious pursuers. IEEE Trans Automat Contr 2022;67:4939-46.

11. Lopez VG, Lewis FL, Wan Y, Sanchez EN, Fan L. Solutions for multiagent pursuit-evasion games on communication graphs: finite-time capture and asymptotic behaviors. IEEE Trans Automat Contr 2020;65:1911-23.

12. Pan T, Yuan Y. A region-based relay pursuit scheme for a pursuit-evasion game with a single evader and multiple pursuers. IEEE Trans Syst Man Cybern, Syst 2023;53:1958-69.

13. Jia S, Wang X, Shen L. A continuous-time markov decision process-based method with application in a pursuit-evasion example. IEEE Trans Syst Man Cybern, Syst 2016;46:1215-25.

14. De Souza C, Newbury R, Cosgun A, et al. Decentralized multi-agent pursuit using deep reinforcement learning. IEEE Robot Autom Lett 2021;6:4552-59.

15. Zhang R, Zong Q, Zhang X, Dou L, Tian B. Game of drones: multi-uav pursuit-evasion game with online motion planning by deep reinforcement learning. IEEE Trans Neural Netw Learn Syst 2022; doi: 10.1109/TNNLS.2022.3146976.

16. Yang Y, Li X, Yuan Z, Wang Q, Xu C, et al. Graded-Q reinforcement learning with information-enhanced state encoder for hierarchical collaborative multi-vehicle pursuit. In: 2022 18th International Conference on Mobility, Sensing and Networking (MSN); 2022. pp. 534–41.

17. Zheng Z, Duan H. UAV maneuver decision-making via deep reinforcement learning for short-range air combat. Intell Robot 2023;3:76-94.

18. Durugkar I, Gemp I, Mahadevan S. Generative multi-adversarial networks. In: International Conference on Learning Representations (ICLR); 2017. Available from: https://openreview.net/forum?id=Byk-VI9eg.

19. Wang Z, Zhu H, He M, et al. Gan and multi-agent drl based decentralized traffic light signal control. IEEE Trans Veh Technol 2021;71:1333-48.

20. Zhan H, Tao F, Cao Y. Human-guided robot behavior learning: a gan-assisted preference-based reinforcement learning approach. IEEE Robot Autom Lett 2021;6:3545-52.

21. Li L, Yao J, Wenliang L, et al. Grin: Generative relation and intention network for multi-agent trajectory prediction. Adv Neural Inf Process Syst 2021;34:27107-18.

22. Xia Y, Zhou J, Shi Z, Lu C, Huang H. Generative adversarial regularized mutual information policy gradient framework for automatic diagnosis. In: Proceedings of the AAAI conference on artificial intelligence. vol. 34; 2020. pp. 1062–69.

23. Zheng C, Yang S, Parra-Ullauri JM, Garcia-Dominguez A, Bencomo N. Reward-reinforced generative adversarial networks for multi-agent systems. IEEE Trans Emerg Top Comput Intell 2021;6:479-88.

24. Liu Y, Wang W, Hu Y, et al. Multi-agent game abstraction via graph attention neural network. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 34; 2020. pp. 7211–18.

25. Du W, Ding S, Zhang C, Shi Z. Multiagent Reinforcement Learning With Heterogeneous Graph Attention Network. IEEE Trans Neural Netw Learn Syst 2022;PP:1-10.

26. Liu Q, Li Z, Li X, Wu J, Yuan S. Graph convolution-based deep reinforcement learning for multi-agent decision-making in interactive traffic scenarios. In: 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC). IEEE; 2022. pp. 4074–81.

27. Xiaoqiang M, Fan Y, Xueyuan L, et al. Graph Convolution Reinforcement Learning for Decision-Making in Highway Overtaking Scenario. In: 2022 IEEE 17th Conference on Industrial Electronics and Applications (ICIEA). IEEE; 2022. pp. 417–22.

28. Chen Y, Shu T, Zhou X, et al. Graph attention network with spatial-temporal clustering for traffic flow forecasting in intelligent transportation system. IEEE Trans Intell Transport Syst 2022; doi: 10.1109/TITS.2022.3208952.

29. Lopez PA, Behrisch M, Bieker-Walz L, et al. Microscopic Traffic Simulation using SUMO. In: The 21st IEEE International Conference on Intelligent Transportation Systems. IEEE; 2018.

30. Rashid T, Samvelyan M, De Witt CS, et al. Monotonic value function factorisation for deep multi-agent reinforcement learning. J Mach Learn Res 2020;21:7234-84.

Intelligence & Robotics
ISSN 2770-3541 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/