REFERENCES
1. Tan C, Sun F, Kong T, et al. A Survey on Deep Transfer Learning. In: Artificial Neural Networks and Machine Learning-ICANN 2018. Springer International Publishing; 2018. pp. 270-79.
2. Dai W, Yang Q, Xue GR, Yu Y. Boosting for transfer learning. In: Proceedings of the 24th International Conference on Machine Learning. ACM; 2007.
3. Gupta S, Bi J, Liu Y, Wildani A. Boosting for regression transfer via importance sampling. Int J Data Sci Anal 2023; doi: 10.1007/s41060-023-00414-8.
4. Yao Y, Doretto G. Boosting for transfer learning with multiple sources. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE; 2010.
5. Xu Y, Pan SJ, Xiong H, et al. A Unified Framework for Metric Transfer Learning. IEEE Trans Knowl Data Eng 2017;29:1158-71.
6. Zhang J, Li W, Ogunbona P. Joint geometrical and statistical alignment for visual domain adaptation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE; 2017.
7. Pan SJ, Tsang IW, Kwok JT, Yang Q. Domain adaptation via transfer component analysis. IEEE Trans Neural Netw 2011;22:199-210.
8. Long M, Cao Y, Cao Z, Wang J, Jordan MI. Transferable Representation Learning with Deep Adaptation Networks. IEEE Trans Pattern Anal Mach Intell 2019;41:3071-85.
9. Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks. Commun ACM 2020;63:139-44.
10. Tzeng E, Hoffman J, Saenko K, Darrell T. Adversarial discriminative domain adaptation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE; 2017.
11. Ganin Y, Ustinova E, Ajakan H, et al. Domain-adversarial training of neural networks. In: Domain Adaptation in Computer Vision Applications. Springer International Publishing; 2017. pp. 189-209.
12. Tzeng E, Hoffman J, Darrell T, Saenko K. Simultaneous deep transfer across domains and tasks. In: 2015 IEEE International Conference on Computer Vision (ICCV). IEEE; 2015.
13. Yosinski J, Clune J, Bengio Y, Lipson H. How transferable are features in deep neural networks? Advances in neural information processing systems 2014;27. Available from: https://proceedings.neurips.cc/paper_files/paper/2014/hash/375c71349b295fbe2dcdca9206f20a06-Abstract.html. [Last accessed on 27 Aug 2023].
14. George D, Shen H, Huerta EA. Classification and unsupervised clustering of {LIGO} data with Deep Transfer Learning. Phys Rev D 2018;97.
15. Oquab M, Bottou L, Laptev I, Sivic J. Learning and transferring mid-level image representations using convolutional neural networks. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition. IEEE; 2014.
16. Long M, Zhu H, Wang J, Jordan MI. Unsupervised domain adaptation with residual transfer networks. NeurIPS 2016;29. Available from: http://ise.thss.tsinghua.edu.cn/~mlong/doc/residual-transfer-network-nips16.pdf. [Last accessed on 27 Aug 2023].
17. Zhu H, Long M, Wang J, Cao Y. Deep Hashing Network for Efficient Similarity Retrieval. In: Proceedings of the AAAI Conference on Artificial Intelligence 2016 mar; 30.
18. Zhang W, Deng L, Zhang L, Wu D. A survey on negative transfer. IEEE/CAA J Automa Sin 2023;10:305-29.
19. Huisman M, Van Rijn JN, Plaat A. A survey of deep meta-learning. Artif Intell Rev 2021;54:4483-541.
20. Rezende DJ, Mohamed S, Danihelka I, Gregor K, Wierstra D. One-shot generalization in deep generative models. In: International conference on machine learning. PMLR; 2016. pp. 1521-29. Available from: http://proceedings.mlr.press/v48/rezende16.pdf. [Last accessed on 27 Aug 2023].
21. Finn C, Abbeel P, Levine S. Model-agnostic meta-learning for fast adaptation of deep networks. In: International conference on machine learning. PMLR; 2017. pp. 1126-35. Available from: http://proceedings.mlr.press/v70/finn17a/finn17a.pdf. [Last accessed on 27 Aug 2023].
22. Campbell J, Guo Y, Xie F, Stepputtis S, Sycara K. Introspective action advising for interpretable transfer learning. In: Conference on Lifelong Learning Agents; 2023. Available from: https://arXiv.org/pdf/2306.12314.pdf. [Last accessed on 27 Aug 2023].
23. Jang Y, Lee H, Hwang SJ, Shin J. Learning what and where to transfer. In: International Conference on Machine Learning. PMLR; 2019. pp. 3030-39. Available from: http://proceedings.mlr.press/v97/jang19b/jang19b.pdf. [Last accessed on 27 Aug 2023].
24. Chang H, Han J, Zhong C, Snijders AM, Mao JH. Unsupervised Transfer Learning via Multi-Scale Convolutional Sparse Coding for Biomedical Applications. IEEE Trans Pattern Anal Mach Intell 2018;40:1182-94.
25. Baker B, Gupta O, Naik N, Raskar R. Designing neural network architectures using reinforcement learning. In: International Conference on Learning Representations; 2016. Available from: https://arXiv.org/pdf/1611.02167.pdf. [Last accessed on 27 Aug 2023].
27. Sutton RS, Barto AG. Reinforcement Learning:An Introduction. IEEE Trans Neural Netw 1998;9:1054-54.
28. Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning. Nature 2015;518:529-33.
29. Bai S, Kolter JZ, Koltun V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv: 180301271 2018. Available from: https://arXiv.org/pdf/1803.01271.pdf. [Last accessed on 27 Aug 2023].