REFERENCES

1. Villani V, Pini F, Leali F, Secchi C. Survey on human-robot collaboration in industrial settings: safety, intuitive interfaces and applications. Mechatronics 2018;55:248-66.

2. Matheson E, Minto R, Zampieri EGG, Faccio M, Rosati G. Human-robot collaboration in manufacturing applications: a review. Robotics 2019;8:100.

3. Hentout A, Aouache M, Maoudj A, Akli I. Human-robot interaction in industrial collaborative robotics: a literature review of the decade 2008 - 2017. Advanced Robotics 2019;33:764-99.

4. Krüger J, Lien T, Verl A. Cooperation of human and machines in assembly lines. CIRP Annals 2009;58:628-46.

5. Keemink AQ, van der Kooij H, Stienen AH. Admittance control for physical human-robot interaction. Int J Rob Res 2018;37:1421-44.

6. Lawrence DA. Impedance control stability properties in common implementations. In: Proceedings. 1988 IEEE International Conference on Robotics and Automation; 1988. p. 1185-90.

7. Tsumugiwa T, Yokogawa R, Yoshida K. Stability analysis for impedance control of robot for human-robot cooperative task system. In: Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2004. p. 3883-8.

8. Calanca A, Muradore R, Fiorini P. A review of algorithms for compliant control of stiff and fixed-compliance robots. IEEE/ASME Trans Mechatron 2016;21:613-24.

9. Tsumugiwa T, Fuchikami Y, Kamiyoshi A, Yokogawa R, Yoshida K. Stability analysis for impedance control of robot in human-robot cooperative task system. J Adv Mech Des Systs Manufacturing 2007;1:113-21.

10. Sharkawy A, Koustoumpardis PN. Human-robot interaction: a review and analysis on variable admittance control, safety, and perspectives. Machines 2022;10:591.

11. Kang G, Oh HS, Seo JK, Kim U, Choi HR. Variable admittance control of robot manipulators based on human intention. IEEE/ASME Trans Mechatron 2019;24:1023-32.

12. Lecours A, Mayer-St-Onge B, Gosselin C. Variable admittance control of a four-degree-of-freedom intelligent assist device. In: 2012 IEEE International Conference on Robotics and Automation; 2012. p. 3903-8.

13. Dimeas F. Online stability in human-robot cooperation with admittance control. IEEE Trans Haptics 2016;9:267-78.

14. Ferraguti F, Talignani Landi C, Sabattini L, Bonfè M, Fantuzzi C, Secchi C. A variable admittance control strategy for stable physical human - robot interaction. Int J Rob Res 2019;38:747-65.

15. Müller F, Janetzky J, Behrnd U, Jäkel J, Thomas U. User force-dependent variable impedance control in human-robot interaction. In: 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE); 2018. p. 1328-35.

16. Buerger SP, Hogan N. Complementary stability and loop shaping for improved human-robot interaction. IEEE Trans Robot 2007;23:232-44.

17. Narawich SONGTHUMJITTI, Takeshi INABA, Modeling and stability analysis of an admittance-controlled cartesian robot considering physical interaction with humans. In: The 23rd Conference of The System Integration Division, The Society of Instrument and Control Engineering, 3P3-E18 (2022).

18. Inaba T, Shu U. Control of power assist system for easy positioning consideration to maneuverability depending on task direction and operator's posture. IEEJ Trans EIS 2014;134:1130-7.

19. Inaba T, Matsuo Y. Loop-shaping characteristics of a human operator in a force reflective manual control system. In: Systems, Man, and Cybernetics, 1997. Computational Cybernetics and Simulation, 1997 IEEE International Conference on. IEEE, 1995.

20. Keviczky L, Bars R, Hetthéssy J, Bányász C. Control engineering. Springer Singapore(2019).

Intelligence & Robotics
ISSN 2770-3541 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/