REFERENCES

1. Chai T, Qin SJ, Wang H. Optimal operational control for complex industrial processes. Annu Rev Control 2014;38:81-92.

2. Dai W, Chai T, Yang SX. Data-driven optimization control for safety operation of hematite grinding process. IEEE Trans Ind Electron 2015;62:2930-41.

3. Wang A, Zhou P, Wang H. Performance analysis for operational optimal control for complex industrial processes under small loop control errors. In: Proceedings of the 2014 international conference on advanced mechatronic systems. IEEE, 2014: 159-64.

4. Wu M, Xu C, She J, Yokoyama R. Intelligent integrated optimization and control system for lead–zinc sintering process. Control Eng Pract 2009;17:280-90.

5. Zhou P, Chai T, Sun J. Intelligence-based supervisory control for optimal operation of a DCS-controlled grinding system. IEEE Trans Contr Syst Technol 2013;21:162-75.

6. Dai W, Zhou P, Zhao D, Lu S, Chai T. Hardware-in-the-loop simulation platform for supervisory control of mineral grinding process. Powder Tech 2016;288:422-34.

7. Chai T, Ding J, Wu F. Hybrid intelligent control for optimal operation of shaft furnace roasting process. Control Eng Pract 2011;19:264-75.

8. Haq IU, Khan Q, Ullah S, et al. Neural network-based adaptive global sliding mode MPPT controller design for stand-alone photovoltaic systems. PLoS One 2022;17:e0260480.

9. Ilyas M, Iqbal J, Ahmad S, Uppal AA, Imtiaz WA, Riaz RA. Hypnosis regulation in propofol anaesthesia employing super-twisting sliding mode control to compensate variability dynamics. IET Syst Biol 2020;14:59-67.

10. Anjum MB, Khan Q, Ullah S, et al. Maximum power extraction from a standalone photo voltaic system via neuro-adaptive arbitrary order sliding mode control strategy with high gain differentiation. Appl Sci 2022;12:2773.

11. Iqbal J. Modern control laws for an articulated robotic arm: modeling and simulation. Eng Technol Appl Sci Res 2019;9:4057-61.

12. Yan X, Zuo Z, Yin L, Wang A, Wang H. Chattering-free sliding mode control for mimo nonlinear manipulator systems based on adaptive neural networks. In: 2015 54th IEEE Conference on Decision and Control (CDC). Dec 2015, pp. 6300–5.

13. Li S, Zhou M, Yu X. Design and implementation of terminal sliding mode control method for PMSM speed regulation system. IEEE Trans Ind Inf 2013;9:1879-91.

14. Zhang J, Lin Y, Feng G. Analysis and synthesis of memory-based fuzzy sliding mode controllers. IEEE Trans Cybern 2015;45:2880-9.

15. Naouar MW, Monmasson E, Naassani AA, Slama-belkhodja I. FPGA-based dynamic reconfiguration of sliding mode current controllers for synchronous machines. IEEE Trans Ind Inf 2013;9:1262-71.

16. Zhang X, Sun L, Zhao K, Sun L. Nonlinear speed control for PMSM system using sliding-mode control and disturbance compensation techniques. IEEE Trans Power Electron 2013;28:1358-65.

17. Lee JD, Khoo S, Wang Z. DSP-based sliding-mode control for electromagnetic-levitation precise-position system. IEEE Trans Ind Inf 2013;9:817-27.

18. Basin MV, Rodriguez-ramirez PC. Sliding mode controller design for stochastic polynomial systems with unmeasured states. IEEE Trans Ind Electron 2014;61:387-96.

19. Khalil HK. Noninear Systems New Jersey: Prentice-Hall; 1996.

20. Polyakov A. Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans Automat Contr 2012;57:2106-10.

21. Feng Y, Yu X, Han F. High-order terminal sliding-mode observer for parameter estimation of a permanent-magnet synchronous motor. IEEE Trans Ind Electron 2013;60:4272-80.

22. Janardhanan S, Bandyopadhyay B. On discretization of continuous-time terminal sliding mode. IEEE Trans Automat Contr 2006;51:1532-6.

23. Lin C. Nonsingular terminal sliding mode control of robot manipulators using fuzzy wavelet networks. IEEE Trans Fuzzy Syst 2006;14:849-59.

24. Zou AM, Kumar KD, Hou ZG, Liu X. Finite-time attitude tracking control for spacecraft using terminal sliding mode and chebyshev Neural Network. IEEE Trans Syst Man Cybern B Cybern 2011;41:950-63.

25. Man Zhihong, Paplinski A, Wu H. A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators. IEEE Trans Automat Contr 1994;39:2464-9.

26. Wang H, Wang YJ, Kabore P. Time-varying controller for known nonlinear dynamic systems with guaranteed stability. Int J Syst Sci 2002;33:931-8.

27. Zuo Z. Nonsingular fixed-time consensus tracking for second-order multi-agent networks. Automatica 2015;54:305-9.

28. Wang A, Wang H, Sheng N, Yin X. Performance analysis for operational optimal control for complex industrial processes — the square impact principle. In: 2015 21st International Conference on Automation and Computing (ICAC), Glasgow, UK, 2015, pp. 1-6.

29. Yin L, Wang H, Yan X, Zhang H. Disturbance observer‐based dynamic optimal setting control. IET Contr Theo Appl 2018;12:2423-32.

Intelligence & Robotics
ISSN 2770-3541 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/