1. Goheen KR, Jefferys ER. Multivariable self-tuning autopilots for autonomous and remotely operated underwater vehicles. IEEE J Oceanic Eng 1990;15:144-51.
2. García-Valdovinos LG, Salgado-Jiménez T, Bandala-Sánchez M, Nava-Balanzar L, Hernández-Alvarado R, Cruz-ledesma JA. Modelling, Design and robust control of a remotely operated underwater vehicle. Int J Adv Robot Syst 2014;11:1.
3. Reisenbichler KR, Chaffey MR, Cazenave F, et al., Automating MBARI's midwater time-series video surveys: The transition from ROV to AUV., In: OCEANS 2016 MTS/IEEE Monterey; 2016. pp. 1–9.
4. Petillot YR, Antonelli G, Casalino G, Ferreira F. underwater robots: from remotely operated vehicles to intervention-autonomous underwater vehicles. IEEE Robot Automat Mag 2019;26:94-101.
5. Wynn RB, Huvenne VAI, Le Bas TP, et al. Autonomous underwater vehicles (AUVs): their past, present and future contributions to the advancement of marine geoscience. Marine Geology 2014;352:451-68.
6. Shi Y, Shen C, Fang H, Li H. Advanced control in marine mechatronic systems: a survey. IEEE/ASME Trans Mechatron 2017;22:1121-31.
7. Li J, Xu Z, Zhu D, et al. Bio-inspired intelligence with applications to robotics: a survey. Intell Robot 2021;1:58-83.
8. Fossen TI., Guidance and control of ocean vehicles., University of Trondheim, Norway, Printed by John Wiley & Sons, Chichester, England, ISBN: 0 471 94113 1, Doctors Thesis 1999.
9. Bogue R. Underwater robots: a review of technologies and applications. Indus Robot 2015;42:186-91.
10. Gafurov SA, Klochkov EV. Autonomous unmanned underwater vehicles development tendencies. Procedia Engineering 2015;106:141-48.
11. Oh KK, Park MC, Ahn HS. A survey of multi-agent formation control. Automatica 2015;53:424-40.
12. Alam K, Ray T, Anavatti SG. A brief taxonomy of autonomous underwater vehicle design literature. Ocean Engineering 2014;88:627-30.
13. Sousa J, Cruz N, Matos A, Pereira FL., Multiple AUVs for coastal oceanography., In: Oceans' 97. MTS/IEEE Conference Proceedings. vol. 1. IEEE; 1997. pp. 409–14.
14. Singh H, Catipovic J, Eastwood R, et al., An integrated approach to multiple AUV communications, navigation and docking., In: OCEANS 96 MTS/IEEE Conference Proceedings. The Coastal Ocean-Prospects for the 21st Century. vol. 1. IEEE; 1996. pp. 59–64.
15. Sotzing CC, Evans J, Lane DM., A multi-agent architecture to increase coordination efficiency in multi-auv operations., In: OCEANS 2007-Europe. IEEE; 2007. pp. 1–6.
16. Yu W, Chen G, Cao M. Distributed leader–follower flocking control for multi-agent dynamical systems with time-varying velocities. Syst Contr Letters 2010;59:543-52.
17. Yamaguchi H. A cooperative hunting behavior by mobile-robot troops. Int J Robot Res 1999;18:931-40.
18. Vidal R, Shakernia O, Kim HJ, Shim DH, Sastry S. Probabilistic pursuit-evasion games: theory, implementation, and experimental evaluation. IEEE Trans Robot Automat 2002;18:662-9.
19. Chung TH, Hollinger GA, Isler V. Search and pursuit-evasion in mobile robotics. Auton Robot 2011;31:299-316.
20. Hespanha JP, Kim HJ, Sastry S., Multiple-agent probabilistic pursuit-evasion games., In: Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No. 99CH36304). vol. 3. IEEE; 1999. pp. 2432–37.
21. Guler S, Fidan B, Gazi V., Adaptive swarm coordination and formation control., In: Tan Y, editor. Handbook of Research on Design, Control, and Modeling of Swarm Robotics. IGI Global; 2016. pp. 175-206.
22. Yan J, Yang X, Luo X, Chen C. Energy-efficient data collection over AUV-assisted underwater acoustic sensor network. IEEE Syst J 2018;12:3519-30.
23. Huang M, Zhang K, Zeng Z, Wang T, Liu Y. An AUV-assisted data gathering scheme based on clustering and matrix completion for smart ocean. IEEE Internet Things J 2020;7:9904-18.
24. Duan R, Du J, Ren J, et al., VoI based information collection for AUV assisted underwater acoustic sensor networks., In: ICC 2020-2020 IEEE International Conference on Communications (ICC). IEEE; 2020. pp. 1–6.
25. Tan HP, Diamant R, Seah WK, Waldmeyer M. A survey of techniques and challenges in underwater localization. Ocean Engineering 2011;38:1663-76.
26. Kinsey JC, Eustice RM, Whitcomb LL., A survey of underwater vehicle navigation: Recent advances and new challenges., In: IFAC conference of manoeuvering and control of marine craft. vol. 88. Lisbon; 2006. pp. 1–12.
27. Yang Y, Xiao Y, Li T. A survey of autonomous underwater vehicle formation: Performance, formation control, and communication capability. IEEE Commun Surv Tutorials 2021;23:815-41.
28. Fossen TI., Handbook of marine craft hydrodynamics and motion control., Chichester: John Wiley & Sons, Ltd; 2011. pp. 343-415.
29. Das B, Subudhi B, Pati BB. Cooperative formation control of autonomous underwater vehicles: an overview. Int J Autom Comput 2016;13:199-225.
30. Wei X, Wang X, Bai X, Bai S, Liu J. Autonomous underwater vehicles localisation in mobile underwater networks. IJSNET 2017;23:61.
31. Chen YQ, Wang Z., Formation control: a review and a new consideration., In: 2005 IEEE/RSJ International conference on intelligent robots and systems. IEEE; 2005. pp. 3181–86.
32. Issa B, Rashid AT. A survey of multi-mobile robot formation control. IJCA 2019;181:12-6.
33. Zhang Y, Mehrjerdi H., A survey on multiple unmanned vehicles formation control and coordination: Normal and fault situations., In: 2013 International conference on unmanned aircraft systems (ICUAS). IEEE; 2013. pp. 1087–96.
34. Do HT, Hua HT, Nguyen MT, et al. Formation control algorithms for multiple-uavs: a comprehensive survey. EAI Endorsed Transactions on Industrial Networks and Intelligent Systems 2021;8:e3-e3.
35. Ziquan Y, Zhang Y, Jiang B, Jun F, Ying J. A review on fault-tolerant cooperative control of multiple unmanned aerial vehicles. Chinese J Aeronaut 2022;35:1-18.
36. Cai G, Dias J, Seneviratne L. A survey of small-scale unmanned aerial vehicles: recent advances and future development trends. Un Sys 2014;02:175-99.
37. Dong X, Yu B, Shi Z, Zhong Y. Time-varying formation control for unmanned aerial vehicles: Theories and applications. IEEE Trans Contr Syst Technol 2015;23:340-8.
38. Scharf DP, Hadaegh FY, Ploen SR., A survey of spacecraft formation flying guidance and control. part ii: control., In: Proceedings of the 2004 American control conference. vol. 4. Ieee; 2004. pp. 2976–85.
39. Liu GP, Zhang S. A survey on formation control of small satellites. Proc IEEE 2018;106:440-57.
40. Yuh J. Design and control of autonomous underwater robots: a survey. Autonomous Robots 2000;8:7-24.
41. Li X, Zhu D, Qian Y. A survey on formation control algorithms for multi-AUV system. Un Sys 2014;02:351-9.
42. Hadi B, Khosravi A, Sarhadi P. A review of the path planning and formation control for multiple autonomous underwater vehicles. J Intell Robot Syst 2021;101.
43. Wang X, Zerr B, Thomas H, Clement B, Xie Z. Pattern formation of multi-AUV systems with the optical sensor based on displacement-based formation control. Int J Syst Sci 2020;51:348-67.
44. Edwards D, Bean T, Odell D, Anderson M., A leader-follower algorithm for multiple AUV formations., In: 2004 IEEE/OES Autonomous Underwater Vehicles (IEEE Cat. No. 04CH37578). IEEE; 2004. pp. 40–46.
45. Ren W, Sorensen N. Distributed coordination architecture for multi-robot formation control. Robot Auton Syst 2008;56:324-33.
46. Cui R, Ge SS, How BVE, Choo YS. Leader–follower formation control of underactuated autonomous underwater vehicles. Ocean Engineering 2010;37:1491-502.
47. Zheng J, Huang Y, Xiao Y. The effect of leaders on the consistency of group behaviour. IJSNET 2012;11:126-35.
48. Cao X, Guo L. A leader–follower formation control approach for target hunting by multiple autonomous underwater vehicle in three-dimensional underwater environments. Int J Adv Robot Syst 2019;16:1729881419870664.
49. Shi H, Wang L, Chu T. Virtual leader approach to coordinated control of multiple mobile agents with asymmetric interactions. Physica D: Nonlinear Phenomena 2006;213:51-65.
50. Droge G., Distributed virtual leader moving formation control using behavior-based MPC., In: 2015 American Control Conference (ACC). IEEE; 2015. pp. 2323–28.
51. Zheping Y, Yibo L, Jiajia Z, Gengshi Z., Moving target following control of multi-auvs formation based on rigid virtual leader-follower under ocean current., In: 2015 34th Chinese control conference (CCC). IEEE; 2015. pp. 5901–6.
52. Li J, Du X., Underactuated multi-AUV robust formation control based on virtual leader., In: 2018 IEEE International Conference on Mechatronics and Automation (ICMA). IEEE; 2018. pp. 1568–73.
53. Tan KH, Lewis MA., Virtual structures for high-precision cooperative mobile robotic control., In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS'96. vol. 1. IEEE; 1996. pp. 132–39.
54. Lewis MA, Tan KH. High precision formation control of mobile robots using virtual structures. Auton Robot 1997;4:387-403.
55. Ren W, Beard RW. Decentralized scheme for spacecraft formation flying via the virtual structure approach. Journal of Guidance, Control, and Dynamics 2004;27:73-82.
56. Yuan J, Tang GY., Formation control for mobile multiple robots based on hierarchical virtual structures., In: IEEE ICCA 2010. IEEE; 2010. pp. 393–98.
57. Zhang Lc, Wang J, Wang T, Liu M, Gao J., Optimal formation of multiple AUVs cooperative localization based on virtual structure., In: OCEANS 2016 MTS/IEEE Monterey. IEEE; 2016. pp. 1–6.
58. Zhen Q, Wan L, Li Y, Jiang D. Formation control of a multi-AUVs system based on virtual structure and artificial potential field on SE (3). Ocean Engineering 2022;253:111148.
59. Yuan C, Licht S, He H. Formation learning control of multiple autonomous underwater vehicles with heterogeneous nonlinear uncertain dynamics. IEEE Trans Cybern 2018;48:2920-34.
60. Balch T, Arkin RC. Behavior-based formation control for multirobot teams. IEEE Trans Robot Automat 1998;14:926-39.
61. Monteiro S, Bicho E., A dynamical systems approach to behavior-based formation control., In: Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292). vol. 3. IEEE; 2002. pp. 2606–11.
62. Xiaomin M, Yang D, Xing L, Sentang W., Behavior-based formation control of multi-missiles., In: 2009 Chinese Control and Decision Conference. IEEE; 2009. pp. 5019–23.
63. Xu D, Zhang X, Zhu Z, Chen C, Yang P. Behavior-based formation control of swarm robots. Mathematical Problems in Engineering 2014;2014:1-13.
64. Hacene N, Mendil B. Behavior-based autonomous navigation and formation control of mobile robots in unknown cluttered dynamic environments with dynamic target tracking. Int J Autom Comput 2021;18:766-86.
65. Khatib O., Real-time obstacle avoidance for manipulators and mobile robots., In: Cox IJ, Wilfong GT, editors. Autonomous Robot Vehicles. New York: Springer; 1990. pp. 396-404.
66. Gazi V. Swarm aggregations using artificial potentials and sliding-mode control. IEEE Trans Robot 2005;21:1208-14.
67. Fiorelli E, Leonard NE, Bhatta P, Paley DA, Bachmayer R, et al. Multi-AUV control and adaptive sampling in Monterey Bay. IEEE J Oceanic Eng 2006;31:935-48.
68. Barnes L, Fields M, Valavanis K., Unmanned ground vehicle swarm formation control using potential fields., In: 2007 Mediterranean Conference on Control & Automation. IEEE; 2007. pp. 1–8.
69. Pereira AR, Hsu L. Adaptive formation control using artificial potentials for Euler-Lagrange agents. IFAC Proceedings Volumes 2008;41:10788-93.
70. Sabattini L, Secchi C, Fantuzzi C. Arbitrarily shaped formations of mobile robots: artificial potential fields and coordinate transformation. Auton Robot 2011;30:385-97.
71. Nair RR, Behera L, Kumar V, Jamshidi M. Multisatellite formation control for remote sensing applications using artificial potential field and adaptive fuzzy sliding mode control. IEEE Syst J 2014;9:508-18.
72. Ying Z, Xu L., Leader-follower formation control and obstacle avoidance of multi-robot based on artificial potential field., In: The 27th Chinese Control and Decision Conference (2015 CCDC). IEEE; 2015. pp. 4355–60.
73. Ihle IA, Skjetne R, Fossen TI., Nonlinear formation control of marine craft with experimental results., In: 2004 43rd IEEE Conference on Decision and Control (CDC)(IEEE Cat. No. 04CH37601). vol. 1. IEEE; 2004. pp. 680–85.
74. Cui R, Xu D, Yan W., Formation control of autonomous underwater vehicles under fixed topology., In: 2007 IEEE International Conference on Control and Automation. IEEE; 2007. pp. 2913–18.
75. Yu W, Wen G, Chen G, Cao J., Distributed cooperative control of multi-agent systems., John Wiley & Sons; 2017.
76. Fink A, Kosecoff J, Chassin M, Brook RH. Consensus methods: characteristics and guidelines for use. Am J Public Health 1984;74:979-83.
77. Ren W, Beard RW, Atkins EM., A survey of consensus problems in multi-agent coordination., In: Proceedings of the 2005, American Control Conference, 2005. IEEE; 2005. pp. 1859–64.
78. Ren W, Beard RW, McLain TW., Coordination variables and consensus building in multiple vehicle systems., In: Kumar V, Leonard N, Morse AS, editors. Cooperative Control. Berlin: Springer Berlin Heidelberg; 2005. pp. 171-88.
79. Olfati-Saber R, Fax JA, Murray RM. Consensus and cooperation in networked multi-agent systems. Proc IEEE 2007;95:215-33.
80. Anderson BD, Yu C, Fidan B, Hendrickx JM. Rigid graph control architectures for autonomous formations. IEEE Control Syst 2008;28:48-63.
81. Mesbahi M, Egerstedt M., Graph theoretic methods in multiagent networks., In: Graph Theoretic Methods in Multiagent Networks. Princeton University Press; 2010.
82. Ren W., Consensus based formation control strategies for multi-vehicle systems., In: 2006 American Control Conference. IEEE; 2006. pp. 6–pp.
83. Porfiri M, Roberson DG, Stilwell DJ. Tracking and formation control of multiple autonomous agents: a two-level consensus approach. Automatica 2007;43:1318-28.
84. Luo X, Han N, Guan X. Leader-following consensus protocols for formation control of multi-agent network. J Syst Eng Electron 2011;22:991-7.
85. Dong R, Geng Z. Consensus based formation control laws for systems on Lie groups. Syst Contr Letters 2013;62:104-11.
86. Dong R, Geng Z. Consensus for formation control of multi-agent systems. Int J Robust Nonlinear Control 2015;25:2481-501.
87. Falconi R, Sabattini L, Secchi C, Fantuzzi C, Melchiorri C. Edge-weighted consensus-based formation control strategy with collision avoidance. Robotica 2015;33:332-47.
88. Listmann KD, Masalawala MV, Adamy J., Consensus for formation control of nonholonomic mobile robots., In: 2009 IEEE international conference on robotics and automation. IEEE; 2009. pp. 3886–91.
89. Wang W, Huang J, Wen C, Fan H. Distributed adaptive control for consensus tracking with application to formation control of nonholonomic mobile robots. Automatica 2014;50:1254-63.
90. Peng Z, Wen G, Rahmani A, Yu Y. Distributed consensus-based formation control for multiple nonholonomic mobile robots with a specified reference trajectory. Int J Syst Sci 2015;46:1447-57.
91. Peng Z, Wen G, Yang S, Rahmani A. Distributed consensus-based formation control for nonholonomic wheeled mobile robots using adaptive neural network. Nonlinear Dynamics 2016;86:605-22.
92. Cheng Y, Jia R, Du H, Wen G, Zhu W. Robust finite-time consensus formation control for multiple nonholonomic wheeled mobile robots via output feedback. Int J Robust Nonlinear Control 2018;28:2082-96.
93. Kuriki Y, Namerikawa T., Consensus-based cooperative formation control with collision avoidance for a multi-UAV system., In: 2014 American Control Conference. IEee; 2014. pp. 2077–82.
94. Kuriki Y, Namerikawa T. Formation control with collision avoidance for a multi-UAV system using decentralized MPC and consensus-based control. SICE Journal of Control, Measurement, and System Integration 2015;8:285-94.
95. Mu B, Li H, Ding J, Shi Y. Consensus in second-order multiple flying vehicles with random delays governed by a Markov chain. Journal of the Franklin Institute 2015;352:3628-44.
96. Du H, Zhu W, Wen G, Duan Z, Lü J. Distributed formation control of multiple quadrotor aircraft based on nonsmooth consensus algorithms. IEEE Trans Cybern 2019;49:342-53.
97. Kuo CW, Tsai CC, Lee CT. Intelligent leader-following consensus formation control using recurrent neural networks for small-size unmanned helicopters. IEEE Trans Syst Man Cybern, Syst 2021;51:1288-301.
98. Wu Y, Gou J, Hu X, Huang Y. A new consensus theory-based method for formation control and obstacle avoidance of UAVs. Aerospace Science and Technology 2020;107:106332.
99. Ren W., Distributed attitude consensus among multiple networked spacecraft., In: 2006 American control conference. IEEE; 2006. pp. 6–pp.
100. Ren W. Distributed attitude alignment in spacecraft formation flying. Int J Adapt Control Signal Process 2007;21:95-113.
101. Guiming L, Liangdong L. Coordinated multiple spacecraft attitude control with communication time delays and uncertainties. Chinese J Aeronaut 2012;25:698-708.
102. Nazari M, Butcher EA, Yucelen T, Sanyal AK. Decentralized consensus control of a rigid-body spacecraft formation with communication delay. Journal of Guidance, Control, and Dynamics 2016;39:838-51.
103. Silvestre C, Pascoal A. Control of the INFANTE AUV using gain scheduled static output feedback. Control Engineering Practice 2004;12:1501-9.
104. Kaminer I, Pascoal AM, Khargonekar PP, Coleman EE. A velocity algorithm for the implementation of gain-scheduled controllers. Automatica 1995;31:1185-91.
105. Mohamed SA, Osman AA, Attia SA, Maged SA., Dynamic model and control of an autonomous underwater vehicle., In: 2020 International Conference on Innovative Trends in Communication and Computer Engineering (ITCE). IEEE; 2020. pp. 182–90.
106. Nag A, Patel SS, Kishore K, Akbar S., A robust H-infinity based depth control of an autonomous underwater vehicle., In: 2013 International Conference on Advanced Electronic Systems (ICAES). IEEE; 2013. pp. 68–73.
107. Zhang Y, Liu X, Luo M, Yang C. MPC-based 3-D trajectory tracking for an autonomous underwater vehicle with constraints in complex ocean environments. Ocean Engineering 2019;189:106309.
108. Naeem W, Sutton R, Ahmad S. LQG/LTR control of an autonomous underwater vehicle using a hybrid guidance law. IFAC Proceedings Volumes 2003;36:31-36.
109. Long C, Qin X, Bian Y, Hu M. Trajectory tracking control of ROVs considering external disturbances and measurement noises using ESKF-based MPC. Ocean Engineering 2021;241:109991.
110. Chellabi A, Nahon M., Feedback linearization control of undersea vehicles., In: Proceedings of OCEANS '93; 1993. pp. I410–ol. 1.
111. Shen C, Shi Y, Buckham B. Trajectory tracking control of an autonomous underwater vehicle using Lyapunov-based model predictive control. IEEE Trans Ind Electron 2018;65:5796-805.
112. Shen C, Shi Y, Buckham B., Nonlinear model predictive control for trajectory tracking of an AUV: A distributed implementation., In: 2016 IEEE 55th Conference on Decision and Control (CDC). IEEE; 2016. pp. 5998–6003.
113. Li H, Xie P, Yan W. Receding horizon formation tracking control of constrained underactuated autonomous underwater vehicles. IEEE Trans Ind Electron 2017;64:5004-13.
114. Wei H, Shen C, Shi Y. Distributed Lyapunov-based model predictive formation tracking control for autonomous underwater vehicles subject to disturbances. IEEE Trans Syst Man Cybern, Syst 2019;51:5198-208.
115. Khodayari MH, Balochian S. Modeling and control of autonomous underwater vehicle (AUV) in heading and depth attitude via self-adaptive fuzzy PID controller. J Mar Sci Technol 2015;20:559-78.
116. Liang X, Qu X, Wan L, Ma Q. Three-dimensional path following of an underactuated AUV based on fuzzy backstepping sliding mode control. Int J Fuzzy Systl 2018;20:640-9.
117. Nan D, Weng Y, Liu Y, Wang X., Accurate trajectory tracking control of unknown autonomous underwater vehicles: A data-driven predictive approach., In: 2021 IEEE 10th Data Driven Control and Learning Systems Conference (DDCLS). IEEE; 2021. pp. 1241–45.
118. Wang D, He B, Shen Y, Li G, Chen G. A Modified ALOS Method of Path Tracking for AUVs with Reinforcement Learning Accelerated by Dynamic Data-Driven AUV Model. J Intell Robot Syst 2022;104:1-23.
119. Shojaei K. Neural network formation control of underactuated autonomous underwater vehicles with saturating actuators. Neurocomputing 2016;194:372-84.
120. Young KD, Utkin VI, Ozguner U. A control engineer's guide to sliding mode control. IEEE Trans Contr Syst Technol 1999;7:328-42.
121. Edwards C, Spurgeon S., Sliding mode control: theory and applications., Crc Press; 1998.
122. Perruquetti W, Barbot JP., Sliding mode control in engineering. vol. 11., Marcel Dekker New York; 2002.
123. Yan Z, Wang M, Xu J. Robust adaptive sliding mode control of underactuated autonomous underwater vehicles with uncertain dynamics. Ocean Engineering 2019;173:802-9.
124. Guo Y, Qin H, Xu B, Han Y, Fan QY, et al. Composite learning adaptive sliding mode control for AUV target tracking. Neurocomputing 2019;351:180-86.
125. Huang B, Yang Q. Double-loop sliding mode controller with a novel switching term for the trajectory tracking of work-class ROVs. Ocean Engineering 2019;178:80-94.
126. Yan Y, Yu S. Sliding mode tracking control of autonomous underwater vehicles with the effect of quantization. Ocean Engineering 2018;151:322-28.
127. Lee PM, Hong SW, Lim YK, et al. Discrete-time quasi-sliding mode control of an autonomous underwater vehicle. IEEE J Oceanic Eng 1999;24:388-95.
128. Zhihong M, Yu XH. Terminal sliding mode control of MIMO linear systems. IEEE Trans Circuits Syst I 1997;44:1065-70.
129. Wang Y, Gu L, Gao M, Zhu K. Multivariable output feedback adaptive terminal sliding mode control for underwater vehicles. Asian J Contr 2016;18:247-65.
130. Elmokadem T, Zribi M, Youcef-Toumi K. Terminal sliding mode control for the trajectory tracking of underactuated Autonomous Underwater Vehicles. textitOcean Engineering 2017;129:613-25.
131. Qiao L, Zhang W. Adaptive non-singular integral terminal sliding mode tracking control for autonomous underwater vehicles. textitIET Control Theory & Applications 2017;11:1293-306.
132. Patre B, Londhe P, Waghmare L, Mohan S. Disturbance estimator based non-singular fast fuzzy terminal sliding mode control of an autonomous underwater vehicle. textitOcean Engineering 2018;159:372-87.
133. Rangel MAG, Manzanilla A, Suarez AEZ, Muñoz F, Salazar S, et al. Adaptive non-singular terminal sliding mode control for an unmanned underwater vehicle: Real-time experiments. textitInt J Control Autom Syst 2020;18:615-28.
134. Salgado-Jimenez T, Spiewak JM, Fraisse P, Jouvencel B., A robust control algorithm for AUV: based on a high order sliding mode., In: Oceans' 04 MTS/IEEE Techno-Ocean'04 (IEEE Cat. No. 04CH37600). vol. 1. IEEE; 2004. pp. 276–81.
135. Li X, Zhu D., Formation control of a group of AUVs using adaptive high order sliding mode controller., In: OCEANS 2016-Shanghai. IEEE; 2016. pp. 1–6.
136. Guerrero J, Antonio E, Manzanilla A, Torres J, Lozano R. Autonomous underwater vehicle robust path tracking: Auto-adjustable gain high order sliding mode controller. textitIFAC-PapersOnLine 2018;51:161-66.
137. Wang J, Wang C, Wei Y, Zhang C. Sliding mode based neural adaptive formation control of underactuated AUVs with leader-follower strategy. textitApplied Ocean Research 2020;94:101971.
138. Borlaug ILG, Pettersen KY, Gravdahl JT. Comparison of two second-order sliding mode control algorithms for an articulated intervention AUV: Theory and experimental results. textitOcean Engineering 2021;222:108480.
139. Yan T, Xu Z, Yang SX. Consensus Formation Control for Multiple AUVSystems Using Distributed Bioinspired Sliding Mode Control. textitIEEE Trans Intell Veh 2022:1-1.
140. Xu H, Zhang Gc, Cao J, Pang S, Sun Ys., Underactuated AUV nonlinear finite-time tracking control based on command filter and disturbance observer., textitSensors (Basel) 2019;19: 4987.Sensors(Basel)2019;19:498731731789.
141. Guerrero J, Torres J, Creuze V, Chemori A. Adaptive disturbance observer for trajectory tracking control of underwater vehicles. textitOcean Engineering 2020;200:107080.
142. Gao Z, Guo G. Fixed-time sliding mode formation control of AUVs based on a disturbance observer. textitIEEE/CAA J Autom Sinica 2020;7:539-45.
143. Su B, Wang Hb, Wang Y. Dynamic event-triggered formation control for AUVs with fixed-time integral sliding mode disturbance observer. textitOcean Engineering 2021;240:109893.
144. Wang H, Su B. Event-triggered formation control of AUVs with fixed-time RBF disturbance observer. textitApplied Ocean Research 2021;112:102638.
145. Li J, Du J, Chang WJ. Robust time-varying formation control for underactuated autonomous underwater vehicles with disturbances under input saturation. textitOcean Engineering 2019;179:180-88.
146. Gao Z, Guo G. Velocity free leader-follower formation control for autonomous underwater vehicles with line-of-sight range and angle constraints. textitInformation Sciences 2019;486:359-78.
147. Wang J, Wang C, Wei Y, Zhang C. Observer-Based Neural Formation Control of Leader–Follower AUVs With Input Saturation. textitIEEE Syst J 2021;15:2553-61.
148. Chen B, Hu J, Zhao Y, Ghosh BK. Finite-time velocity-free observer-based consensus tracking for heterogeneous uncertain AUVs via adaptive sliding mode control. textitOcean Engineering 2021;237:109565.
149. Yan Z, Zhang C, Tian W, Cai S, Zhao L. Distributed observer-based formation trajectory tracking method of leader-following multi-AUV system. textitOcean Engineering 2022;260:112019.
150. Filaretov V, Zhirabok A, Zuev A, Procenko A., The development of system of accommodation to faults of navigation sensors of underwater vehicles with resistance to disturbance., In: 2014 14th International Conference on Control, Automation and Systems (ICCAS 2014); 2014. pp. 1548–53.
151. Xia Y, Xu K, Wang W, et al. Optimal robust trajectory tracking control of a X-rudder AUV with velocity sensor failures and uncertainties. textitOcean Engineering 2020;198:106949.
152. Liu Z, Yu X, Yuan C, Zhang Y., Leader-follower formation control of unmanned aerial vehicles with fault tolerant and collision avoidance capabilities., In: 2015 international conference on unmanned aircraft systems (ICUAS). IEEE; 2015. pp. 1025–30.
153. Wang X, Yadav V, Balakrishnan SN. Cooperative UAV Formation Flying With Obstacle/Collision Avoidance. textitIEEE Trans Contr Syst Technol 2007;15:672-79.
154. Chang K, Xia Y, Huang K. UAV formation control design with obstacle avoidance in dynamic three-dimensional environment. textitSpringerPlus 2016;5:1-16.
155. Shou Y, Xu B, Lu H, Zhang A, Mei T. Finite-time formation control and obstacle avoidance of multi-agent system with application. textitIntl J Robust & Nonlinear 2022;32:2883-901.
156. Lobo Pereira F, Borges de Sousa J, Gomes R, Calado P., A model predictive control approach to AUVs motion coordination., In: van Schuppen JH, Villa T, editors. Coordination Control of Distributed Systems. Cham: Springer International Publishing; 2015. pp. 9-18.
157. Guo H, Shen C, Zhang H, Chen H, Jia R. Simultaneous trajectory planning and tracking using an MPC method for cyber-physical systems: A case study of obstacle avoidance for an intelligent vehicle. textitIEEE Trans Ind Inf 2018;14:4273-83.
158. Wang X, Yao X, Zhang L. Path planning under constraints and path following control of autonomous underwater vehicle with dynamical uncertainties and wave disturbances. textitJ Intell Robot Syst 2020;99:891-908.
159. Lindqvist B, Mansouri SS, Agha-mohammadi Aa, Nikolakopoulos G. Nonlinear MPC for collision avoidance and control of UAVs with dynamic obstacles. textitIEEE Robot Autom Lett 2020;5:6001-8.
160. Zhang Gl, Jia Hm., Global path planning of AUV based on improved ant colony optimization algorithm., In: 2012 IEEE International Conference on Automation and Logistics. IEEE; 2012. pp. 606–10.
161. Lin C, Wang H, Yuan J, Fu M. An online path planning method based on hybrid quantum ant colony optimization for AUV. textitInt J Robot Autom 2018;33:435-44.
162. Phung MD, Quach CH, Dinh TH, Ha Q. Enhanced discrete particle swarm optimization path planning for UAV vision-based surface inspection. textitAutom Construction 2017;81:25-33.
163. Wang D, Fan T, Han T, Pan J. A two-stage reinforcement learning approach for multi-UAV collision avoidance under imperfect sensing. textitIEEE Robot Autom Lett 2020;5:3098-105.
164. Yan Z, Yang Z, Yue L, et al. Discrete-time coordinated control of leader-following multiple AUVs under switching topologies and communication delays. textitOcean Engineering 2019;172:361-72.
165. Sørensen FF, von Benzon M, Liniger J, Pedersen S. A quantitative parametric study on output time delays for autonomous underwater cleaning operations. textitJMSE 2022;10:815.
166. Pedersen S, Liniger J, Sørensen FF, Schmidt K, von Benzon M, et al. Stabilization of a ROV in three-dimensional space using an underwater acoustic positioning system. textitIFAC-PapersOnLine 2019;52:117-22.
167. Millán P, Orihuela L, Jurado I, Rubio FR. Formation control of autonomous underwater vehicles subject to communication delays. textitIEEE Trans Contr Syst Technol 2013;22:770-77.
168. Yan Z, Pan X, Yang Z, Yue L. Formation control of leader-following multi-UUVs with uncertain factors and time-varying delays. textitIEEE Access 2019;7:118792-805.
169. Chen S, Ho DW. Consensus control for multiple AUVs under imperfect information caused by communication faults. textitInformation Sciences 2016;370-371:565-77.
170. Burlutskiy N, Touahmi Y, Lee BH. Power efficient formation configuration for centralized leader–follower AUVs control. textitJ Mar Sci Technol 2012;17:315-29.
171. Sharif BS, Neasham J, Hinton OR, Adams AE. A computationally efficient Doppler compensation system for underwater acoustic communications. textitIEEE J Oceanic Eng 2000;25:52-61.
172. Li B, Zhou S, Stojanovic M, Freitag L, Willett P. Multicarrier communication over underwater acoustic channels with nonuniform Doppler shifts. textitIEEE J Oceanic Eng 2008;33:198-209.
173. Yoshizawa S, Saito T, Mabuchi Y, Tsukui T, Sawada S. Parallel resampling of OFDM signals for fluctuating doppler shifts in underwater acoustic communication. textitJ Electr Compu Eng 2018;2018:1-11.
174. Hu Z, Ma C, Zhang L, et al. Formation control of impulsive networked autonomous underwater vehicles under fixed and switching topologies. textitNeurocomputing 2015;147:291-98.
175. Yan Z, Xu D, Chen T, Zhang W, Liu Y. Leader-follower formation control of UUVs with model uncertainties, current disturbances, and unstable communication. textitSensors 2018;18:662.
176. Seuret A, de Wit CC, et al., Contraction control of a fleet circular formation of AUVs under limited communication range., In: Proceedings of the 2010 American Control Conference. IEEE; 2010. pp. 5991–96.
177. Tomera M. Hybrid switching controller design for the maneuvering and transit of a training ship. textitInt J Appl Mathem Compu Sci 2017;27:63-77.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.