REFERENCES
1. Mohandes B, El Moursi MS, Hatziargyriou N, El Khatib S. A review of power system flexibility with high penetration of renewables. IEEE Trans Power Syst 2019;34:3140-55.
2. Ranjan M, Shankar R. A literature survey on load frequency control considering renewable energy integration in power system: Recent trends and future prospects. J Energy Stor 2022;45:103717.
3. Peng C, Li F. A survey on recent advances in event-triggered communication and control. Inform Sci 2018;457:113-25.
4. Zhou Q, Shahidehpour M, Paaso A, et al. Distributed control and communication strategies in networked microgrids. IEEE Communic Surv & Tutori 2020;22:2586-633.
5. Shang Y. Group consensus of multi-agent systems in directed networks with noises and time delays. Int J Syst Sci 2015;46:2481-92.
6. Alhelou HH, Hamedani-Golshan ME, Zamani R, Heydarian-Forushani E, Siano P. Challenges and opportunities of load frequency control in conventional, modern and future smart power systems: a comprehensive review. Energies 2018;11:2497.
7. Yan Z, Xu Y. Data-driven load frequency control for stochastic power systems: a deep reinforcement learning method with continuous action search. IEEE Trans Power Syst 2018;34:1653-56.
8. Peng C, Wu J, Tian E. Stochastic event-triggered
9. Shangguan XC, He Y, Zhang CK, et al. Control performance standards-oriented event-triggered load frequency control for power systems under limited communication bandwidth. IEEE Trans Contr Syst Technol 2021;30:860-68.
10. Tian E, Peng C. Memory-based event-triggering
11. Peng C, Sun H, Yang M, Wang YL. A survey on security communication and control for smart grids under malicious cyber attacks. IEEE Trans Syst, Man, Cybern: Systems 2019;49:1554-69.
12. Wang D, Chen F, Meng B, Hu X, Wang J. Event-based secure
13. Wu J, Peng C, Yang H, Wang YL. Recent advances in event-triggered security control of networked systems: a survey. Int J Syst Sci 2022;0:1-20.
14. Freirich D, Fridman E. Decentralized networked control of systems with local networks: a time-delay approach. Automatica 2016;69:201-9.
15. Liu K, Fridman E, Hetel L, Richard JP. Sampled-data stabilization via round-robin scheduling: a direct Lyapunov-Krasovskii approach. IFAC Proceed Vol 2011;44:1459-64.
16. Ding D, Wang Z, Han QL, Wei G. Neural-network-based output-feedback control under round-robin scheduling protocols. IEEE trans cybern 2018;49:2372-84.
17. Zou L, Wang Z, Han QL, Zhou D. Full information estimation for time-varying systems subject to Round-Robin scheduling: A recursive filter approach. IEEE Trans Syst, Man, Cybern: Systems 2019;51:1904-16.
18. Zhang XM, Han QL, Ge X, et al. Networked control systems: a survey of trends and techniques. IEEE/CAA J Autom Sinica 2019;7:1-17.
19. Liu K, Fridman E, Hetel L. Network-based control via a novel analysis of hybrid systems with time-varying delays. In: 2012 IEEE 51st IEEE Confer Decis Contr (CDC). IEEE; 2012. pp. 3886-91.
20. Zhang J, Peng C, Xie X, Yue D. Output feedback stabilization of networked control systems under a stochastic scheduling protocol. IEEE trans cybern 2019;50:2851-60.
21. Liu K, Fridman E, Johansson KH. Networked control with stochastic scheduling. IEEE Trans Autom Contr 2015;60:3071-76.
22. Zhang J, Peng C. Networked
23. Peng C, Zhang J, Yan H. Adaptive event-triggering
24. Sun H, Peng C, Yue D, Wang YL, Zhang T. Resilient load frequency control of cyber-physical power systems under QoS-dependent event-triggered communication. IEEE Trans Syst, Man, Cybernet: Systems 2020;51:2113-22.
25. Shang Y. Median-based resilient consensus over time-varying random networks. IEEE Trans Circ Syst Ⅱ: Express Briefs 2021;69:1203-7.
26. Seuret A, Gouaisbaut F. Wirtinger-based integral inequality: application to time-delay systems. Automatica 2013;49:2860-66.
27. El Ghaoui L, Oustry F, AitRami M. A cone complementarity linearization algorithm for static output-feedback and related problems. IEEE trans autom contr 1997;42:1171-76.
28. Peng C, Li J, Fei M. Resilient Event-Triggering