REFERENCES

1. Sun Y, Ma K, Sheng D, Liu D, Dai B, Sun L. Research on bridge structural damage identification. Sci Program 2022;2022:1-14.

2. Lin W, Sun Y, Yang Q, Lin Y. Real-time comprehensive image processing system for detecting concrete bridges crack. Comput Concr 2019;23:445-457.

3. Putra SA, Trilaksono BR, Riyansyah M, Laila DS. Multiagent architecture for bridge capacity measurement system using wireless sensor network and weight in motion. IEEE Trans Instrum Meas 2021;70:1-14.

4. Collings D, Sagaseta J. Modern concrete bridge deck analysis considering the effects of cracking. Proc Inst Civ Eng: Struct Build 2021;174:595-605.

5. Mao J, Yang C, Wang H, Zhang Y, Lu H. Bayesian operational modal analysis with genetic optimization for structural health monitoring of the long-span bridge. Int J Str Stab Dyn 2022;22:2250051.

6. Maes K, Van Meerbeeck L, Reynders E, Lombaert G. Validation of vibration-based structural health monitoring on retrofitted railway bridge KW51. Mech Syst Signal Process 2022;165:108380.

7. Prasanna P, Dana KJ, Gucunski N, et al. Automated crack detection on concrete bridges. IEEE Trans Automat Sci Eng 2016;13:591-9.

8. Zhang L, Zhou G, Han Y, Lin H, Wu Y. Application of internet of things technology and convolutional neural network model in bridge crack detection. IEEE Access 2018;6:39442-51.

9. Li H, Xu H, Tian X, et al. Bridge crack detection based on ssenets. Appl Sci 2020;10:4230.

10. Jiang W, Liu M, Peng Y, Wu L, Wang Y. HDCB-net: a neural network with the hybrid dilated convolution for pixel-level crack detection on concrete bridges. IEEE Trans Ind Inf 2021;17:5485-94.

11. Yamaguchi T, Mizutani T, Tarumi M, Su D. Sensitive damage detection of reinforced concrete bridge slab by “time-variant deconvolution” of SHF-band radar signal. IEEE Trans Geosci Remote Sensing 2019;57:1478-88.

12. Xu H, Su X, Wang Y, Cai H, Cui K, Chen X. Automatic bridge crack detection using a convolutional neural network. Applied Sciences 2019;9:2867.

13. Gao R, He J. Seismic performance assessment of concrete bridges with traffic-induced fatigue damage. Eng Fail Anal 2022;134:106042.

14. Lon Wah W, Xia Y. Elimination of outlier measurements for damage detection of structures under changing environmental conditions. Struct Health Monit 2022;21:320-38.

15. Guo L, Li R, Jiang B. A cascade broad neural network for concrete structural crack damage automated classification. IEEE Trans Industr Inform 2021;17:2737-42.

16. Okazaki Y, Okazaki S, Asamoto S, Chun P. Applicability of machine learning to a crack model in concrete bridges. COMPUT-AIDED CIV INF 2020;35:775-92.

17. Lu Q, Zhu J, Zhang W. Quantification of fatigue damage for structural details in slender coastal bridges using machine learning-based methods. J Bridge Eng 2020;25:04020033.

18. Li G, Liu Q, Zhao S, Qiao W, Ren X. Automatic crack recognition for concrete bridges using a fully convolutional neural network and naive Bayes data fusion based on a visual detection system. Meas Sci Technol 2020;31:075403.

19. Kumar P, Sharma A, Kota SR. Automatic multiclass instance segmentation of concrete damage using deep learning model. IEEE Access 2021;9:90330-45.

20. Pathak N. .

21. Attard L, Debono CJ, Valentino G, Castro MD, Masi A, Scibile L. .

22. Kamada S, Ichimura T, Iwasaki T. .

23. Liu T, Zhang L, Zhou G, Cai W, Cai C, Li L. BC-DUnet-based segmentation of fine cracks in bridges under a complex background. PLoS One 2022;17:e0265258.

24. Simonetti F, Satow IL, Brath AJ, et al. Cryo-ultrasonic NDE: ice-cold ultrasonic waves for the detection of damage in complex-shaped engineering components. IEEE Trans Ultrason Ferroelectr Freq Control 2018;65:638-47.

25. Zhou LQ, Colston G, Myronov M, et al. Ultrasonic inspection and self-healing of ge and 3C-SiC semiconductor membranes. J Microelectromech Syst 2020;29:370-7.

26. Lee FW, Chai HK, Lim KS, Lau SH. Concrete sub-surface crack characterization by means of surface rayleigh wave method. ACI Materials Journal 2019:116.

27. Wadas SH, Tschache S, Polom U, Krawczyk CM. Ground instability of sinkhole areas indicated by elastic moduli and seismic attributes. Geophys J Int 2020;222:289-304.

28. Ghasemi MF, Bayuk IO. Application of rock physics modelling to investigate the differences between static and dynamic elastic moduli of carbonates. Geophys J Int 2020;222:1992-2023.

29. Luan X, Huang B, Sedghi S, Liu F. Probabilistic PCR based near-infrared modeling with temperature compensation. ISA Trans 2018;81:46-51.

30. Zhu J, Ge Z, Song Z. Distributed parallel PCA for modeling and monitoring of large-scale plant-wide processes with big data. IEEE Trans Ind Inf 2017;13:1877-85.

31. Yu Y, Rashidi M, Samali B, Yousefi AM, Wang W. Multi-image-feature-based hierarchical concrete crack identification framework using optimized SVM multi-classifiers and D-S fusion algorithm for bridge structures. Remote Sens 2021;13:240.

32. Mei Q, Gül M, Boay M. Indirect health monitoring of bridges using Mel-frequency cepstral coefficients and principal component analysis. Mech Syst Signal Process 2019;119:523-46.

33. Dong Z, Sun X, Xu F, Liu W. A low-rank and sparse decomposition-based method of improving the accuracy of sub-pixel grayscale centroid extraction for spot images. IEEE Sensors J 2020;20:5845-54.

34. Li L, Gao X, Sun R, Lu C. Study on bridge floor crack classification method based on sparse coding. J Light Technol 2018;33:66-74.

35. Wang B, Zhang Q, Zhao W. Fast concrete crack detection method via L2 sparse representation. Electron lett 2018;54:752-4.

36. Naveed K, Rehman NU. Wavelet based multivariate signal denoising using mahalanobis distance and EDF statistics. IEEE Trans Signal Process 2020;68:5997-6010.

37. Nguyen TQ, Vuong LC, Le CM, Ngo NK, Nguyen-Xuan H. A data-driven approach based on wavelet analysis and deep learning for identification of multiple-cracked beam structures under moving load. Meas Sci Technol 2020;162:1-21.

38. Nigam R, Singh SK. Crack detection in a beam using wavelet transform and photographic measurements. Structures 2020;25:436-47.

39. Wang S, Feng J, Jiang Y. Input-output method to fault detection for discrete-time fuzzy networked systems with time-varying delay and multiple packet losses. Int J Syst Sci 2016;47:1495-513.

40. Liu L, Wang Z, Zhang H. Adaptive NN fault-tolerant control for discrete-time systems in triangular forms with actuator fault. Neurocomputing 2015;152:209-221.

41. Mao W-L, Chu C-T. Modeless magnetic bearing system tracking using an adaptive fuzzy hermite neural network method. IEEE Sens J 2019;19:5904-15.

42. Na J, Huang Y, Wu X, Su S-F, Li G. Adaptive finite-time fuzzy control of nonlinear active suspension systems with input delay. IEEE Trans Cybern 2020;50:2639-50.

43. Bilir T, Gencel O, Topcu IB. Prediction of restrained shrinkage crack widths of slag mortar composites by Takagi and Sugeno ANFIS models. Neural Comput Appl 2016;27:2523-36.

44. Sharma M, Anotaipaiboon W, Chaiyasarn K. Concrete crack detection using the integration of convolutional neural network and support vector machine. Sci Technol Asia 2018;23:19-28.

45. Wang D, Dong Y, Pan Y, Ma R. Machine vision-based monitoring methodology for the fatigue cracks in U-Rib-to-Deck weld seams. IEEE Access 2020;8:94204-19.

46. Zheng M, Lei Z, Zhang K. Intelligent detection of building cracks based on deep learning. Image Vis Comput 2020;103:1-10.

47. Xu H, Su X, Wang Y, Cai H, Cui K, Chen X. Automatic bridge crack detection using a convolutional neural network. Appl Sci 2019;9:2867.

48. Teng S, Liu Z, Chen G, Cheng L. Concrete crack detection based on well-known feature extractor model and the YOLO_v2 network. Appl Sci 2021;11:1-13.

49. Pan Y, Zhang G, Zhang L. A spatial-channel hierarchical deep learning network for pixel-level automated crack detection. Autom Constr 2020;119:103357.

50. Zhao J, Hu F, Qiao W, Zhai W, Xu Y, Bao Y, et al. A modified U-net for crack segmentation by self-attention-self-adaption neuron and random elastic deformation. Smart Struct Syst 2022;29:1-16.

51. Yang Y, Sun H, Xue J, et al. Correction to: estimating evapotranspiration by coupling bayesian model averaging methods with machine learning algorithms. Environ Monit Assess 2021;193:207.

52. Zhao X, Wang R, Gu H, Song G, Mo YL. Innovative data fusion enabled structural health monitoring approach. Math Probl Eng 2014;2014:1-10.

53. Guo T, Xu Z. Data fusion of multi-scale representations for structural damage detection. Mech Syst Signal Process 2018;98:1020-33.

54. Zhang Y, Ding SX, Yang Y, Li L. Data‐driven design of two‐degree‐of‐freedom controllers using reinforcement learning techniques. IIET Control Theory Appl 2015;9:1011-21.

55. Palanisamy RP, Cho S, Kim H, Sim S. Experimental validation of Kalman filter-based strain estimation in structures subjected to non-zero mean input. Smart Struct Syst 2015;15:489-503.

56. Xu Y, Bao Y, Chen J, Zuo W, Li H. Surface fatigue crack identification in steel box girder of bridges by a deep fusion convolutional neural network based on consumer-grade camera images. Struct Health Monit 2019;18:653-74.

57. Li G, Li X, Zhou J, Liu D, Ren W. Pixel-level bridge crack detection using a deep fusion about recurrent residual convolution and context encoder network. Measurement 2021;176:109171.

58. Chen F, Jahanshahi MR. NB-CNN: Deep learning-based crack detection using convolutional neural network and naïve bayes data fusion. IEEE Trans Ind Electron 2018;65:4392-400.

59. Yang J, Li H, Zou J, Jiang S, Li R, Liu X. Concrete crack segmentation based on UAV-enabled edge computing. Neurocomputing 2022;485:233-41.

60. Li X, Zhou J, Pedrycz W. Linking granular computing, big data and decision making: a case study in urban path planning. Soft Comput 2020;24:7435-50.

61. Wang B, Zhao W, Gao P, Zhang Y, Wang Z. Crack damage detection method via multiple visual features and efficient multi-task learning model. Sensors (Basel) 2018;18:1796.

62. Yan B, Cui Y, Zhang L, et al. Beam structure damage identification based on BP neural network and support vector machine. Math Probl Eng 2014;2014:1-8.

63. Liu M, Li L, Zhao X, Liu H. .

64. Chen CLP, Liu Z. .

65. Chen CLP, Liu Z. Broad learning system: an effective and efficient incremental learning system without the need for deep architecture. IEEE Trans Neural Netw Learn Syst 2018;29:10-24.

66. Guo L, Li R, Jiang B, Shen X. Automatic crack distress classification from concrete surface images using a novel deep-width network architecture. Neurocomputing 2020;397:383-92.

67. Chen CLP, Liu Z, Feng S. Universal approximation capability of broad learning system and its structural variations. IEEE Trans Neural Netw Learn Syst 2019;30:1191-204.

68. Xu M, Han M, Chen CLP, Qiu T. Recurrent broad learning systems for time series prediction. IEEE Trans Cybern 2020;50:1405-17.

69. Li C, Cheng D, Li Y. Research on bridge crack detection algorithm based on deep learning. J Lab Autom 2019;45:16.

70. Islam MMM, Kim JM. Vision-based autonomous crack detection of concrete structures using a fully convolutional encoder-decoder network. Sensors (Basel) 2019;19:4251.

71. Liang D, Zhou X, Wang S, Liu C. Research on concrete cracks recognition based on dual convolutional neural network. KSCE J Civ Eng 2019;23:3066-74.

72. Li L, Liu G, Zhang L, Li Q. FS-LSTM-based sensor fault and structural damage isolation in SHM. IEEE Sensors J 2021;21:3250-9.

73. Zhao Z, Zhou X. 3D digital analysis of cracking behaviors of rocks through 3D reconstruction model under triaxial compression. J Eng Mech 2020;146:04020084.

74. Yang L, Li B, Li W, Brand H, Jiang B, Xiao J. Concrete defects inspection and 3D mapping using CityFlyer quadrotor robot. IEEE/CAA J Autom Sinica 2020;7:991-1002.

Intelligence & Robotics
ISSN 2770-3541 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/