REFERENCES
1. United States Department of Agriculture NASS. Poultry-production and value 2020 summary; 2018. Available from: https://www.nass.usda.gov/Publications/Todays_Reports/reports/plva0421.pdf[Last accessed on 30 Aug 2022].
2. Tottori J, Yamaguchi R, Murakawa Y, Sato M, Uchida K, et al. The use of feed restriction for mortality control of chickens in broiler farms. Avian Dis 1997:433-37.
3. Schwean-Lardner K, Fancher B, Gomis S, Van Kessel A, Dalal S, et al. Effect of day length on cause of mortality, leg health, and ocular health in broilers. Poultry Sci 2013;92:1-11.
4. Astill J, Dara RA, Fraser ED, Roberts B, Sharif S. Smart poultry management: smart sensors, big data, and the internet of things. Comput Electr Agricult 2020;170:105291.
5. Ren G, Lin T, Ying Y, Chowdhary G, Ting K. Agricultural robotics research applicable to poultry production: a review. Comput Electr Agricult 2020;169:105216.
6. Vroegindeweij BA, Blaauw SK, IJsselmuiden JM, van Henten EJ. Evaluation of the performance of PoultryBot, an autonomous mobile robotic platform for poultry houses. Biosyst engineer 2018;174:295-315.
7. Li G, Chesser GD, Huang Y, Zhao Y, Purswell JL, et al. Development and optimization of a deep-learning-based egg collecting robot. Trans ASABE 2021:0.
8. Liu L, Luo C, Shen F. Multi-agent formation control with target tracking and navigation. In: IEEE International Conference on Information and Automation (ICIA); 2017. pp. 98-103.
9. Chen J, Luo C, Krishnan M, Paulik M, Tang Y. An enhanced dynamic delaunay triangulation-based path planning algorithm for autonomous mobile robot navigation. In: Intelligent Robots and Computer Vision XXVⅡ: Algorithms and Techniques. vol. 7539. SPIE; 2010. pp. 253-64.
10. Zhao W, Lun R, Gordon C, Fofana AB, Espy DD, et al. A privacy-aware Kinect-based system for healthcare professionals. In: IEEE International Conference on Electro Information Technology (EIT); 2016. pp. 0205-10.
11. Lei T, Luo C, Ball JE, Rahimi S. A graph-based ant-like approach to optimal path planning. In: IEEE Congr Evol Comput (CEC). IEEE; 2020. pp. 1-6.
12. Lei T, Luo C, Jan GE, Fung K. Variable speed robot navigation by an ACO approach. In: International Conference on Swarm Intelligence. Springer; 2019. pp. 232-42.
13. Wang L, Luo C, Li M, Cai J. Trajectory planning of an autonomous mobile robot by evolving ant colony system. Int J Robot Autom 2017;32: 406-13. https://www.researchgate.net/profile/Chaomin-Luo/publication/319032211_Trajectory_planning_of_an_autonomous_mobile_robot_by_evolving_ant_colony_system/links/5997a952458515644325892e/Trajectory-planning-of-an-autonomous-mobile-robot-by-evolving-ant-colony-system.pdf[Last accessed on 30 Aug 2022].
14. Lei T, Luo C, Ball JE, Bi Z. A hybrid fireworks algorithm to navigation and mapping. In: Handbook of Research on Fireworks Algorithms and Swarm Intelligence. IGI Global; 2020. pp. 213-32.
15. Lei T, Luo C, Sellers T, Rahimi S. A bat-pigeon algorithm to crack detection-enabled autonomous vehicle navigation and mapping. Intell Syst Applic 2021;12:200053.
16. Wang J, Meng MQH. Optimal path planning using generalized Voronoi graph and multiple potential functions. IEEE Trans Industr Electron 2020;67:10621-30.
17. Yang SX, Luo C. A neural network approach to complete coverage path planning. IEEE Trans Syst, Man, Cybern, Part B (Cybernetics) 2004;34:718-24.
18. Luo C, Yang SX, Krishnan M, Paulik M. An effective vector-driven biologically-motivated neural network algorithm to real-time autonomous robot navigation. In: IEEE International Conference on Robotics and Automation (ICRA); 2014. pp. 4094-99.
19. Zhu D, Tian C, Jiang X, Luo C. Multi-AUVs cooperative complete coverage path planning based on GBNN algorithm. In: 29th Chinese Control and Decision Conference (CCDC); 2017. pp. 6761-66.
20. Lei T, Sellers T, Rahimi S, Cheng S, Luo C. A nature-inspired algorithm to adaptively safe navigation of a Covid-19 disinfection robot. In: International Conference on Intelligent Robotics and Applications. Springer; 2021. pp. 123-34.
21. Luo C, Gao J, Murphey YL, Jan GE. A computationally efficient neural dynamics approach to trajectory planning of an intelligent vehicle. In: 2014 International Joint Conference on Neural Networks (IJCNN). IEEE; 2014. pp. 934-39.
22. Luo C, Yang SX. A bioinspired neural network for real-time concurrent map building and complete coverage robot navigation in unknown environments. IEEE Trans Neural Netw 2008;19:1279-98.
23. Acar EU, Choset H. Sensor-based coverage of unknown environments: Incremental construction of morse decompositions. Int J Robot Res 2002;21:345-66.
24. Nasirian B, Mehrandezh M, Janabi-Sharifi F. Efficient coverage path planning for mobile disinfecting robots using graph-based representation of environment. Front Robot AI 2021;8:4.
25. Lei T, Luo C, Jan G, Bi Z. Deep learning-based complete coverage path planning with re-joint and obstacle fusion paradigm. Front Robot AI 2022; doi: 10.3389/frobt.2022.843816.
26. Li G, Hui X, Lin F, Zhao Y. Developing and evaluating poultry preening behavior detectors via mask region-based convolutional neural network. Animals 2020;10:1762.
27. Li G, Xu Y, Zhao Y, Du Q, Huang Y. Evaluating convolutional neural networks for cage-free floor egg detection. Sensors 2020;20:332.
28. Bochkovskiy A, Wang CY, Liao HYM. Yolov4:optimal speed and accuracy of object detection. arXiv preprint arXiv: 200410934 2020; doi: 10.48550/arXiv.2004.10934.
29. Tabler G, Berry I, Xin H, Barton T. Spatial distribution of death losses in broiler flocks. J appl poultry res 2002;11:388-96.
30. Li G, Ji B, Li B, Shi Z, Zhao Y, et al. Assessment of layer pullet drinking behaviors under selectable light colors using convolutional neural network. Comput Electr Agricult 2020;172:105333.
31. Lei T, Luo C, Sellers T, Wang Y, Liu L. Multi-task allocation framework with spatial dislocation collision avoidance for multiple aerial robots. IEEE Trans Aerosp Electr Syst 2022; doi: 10.1109/TAES.2022.3167652.
32. United States Department of Agriculture NASS. Agricultural resource management survey (ARMS) of the U.S. broiler industry; 2011. https://www.nass.usda.gov/Surveys/Guide_to_NASS_Surveys/Ag_Resource_Management/ARMS_Broiler_Factsheet/Poultry%20Results%20-%20Fact%20Sheet.pdf[Last accessed on 30 Aug 2022].
33. Mendeş M. Growth curves for body weight and some body measurement of Ross 308 broiler chickens. J Appli Animal Res 2009;36:85-88.
34. Chen W, Liu L. Pareto Monte Carlo tree search for multi-objective informative planning. arXiv preprint arXiv: 211101825 2021; doi: 10.48550/arXiv.2111.01825.
35. Yang Y, Deng Q, Shen F, Zhao J, Luo C. A shapelet learning method for time series classification. In: IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI); 2016. pp. 423-30.
36. Xing Y, Shen F, Luo C, Zhao J. L3-SVM: a lifelong learning method for SVM. In: 2015 international joint conference on neural networks (IJCNN). IEEE; 2015. pp. 1-8.
38. Bergmann S, Schwarzer A, Wilutzky K, Louton H, Bachmeier J, et al. Behavior as welfare indicator for the rearing of broilers in an enriched husbandry environment-a field study. J Veterin Behav 2017;19: 90-101. https://www.sciencedirect.com/science/article/pii/S1558787816301915[Last accessed on 30 Aug 2022].
39. Bixby B, Reinelt G. Traveling salesman problem library; 2022. http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html[Last accessed on 30 Aug 2022].