REFERENCES

1. Ni J, Zhang X, Shi P, Zhu J. An Improved kernelized correlation filter based visual tracking method. Mathematical Problems in Engineering 2018;2018:1-12.

2. Zhang Z, Chen B, Yang M. Moving target detection based on time reversal in a multipath environment. IEEE Trans Aerosp Electron Syst 2021;57:3221-36.

3. Ni J, Yang L, Wu L, Fan X. An improved spinal neural system-based approach for heterogeneous AUVs cooperative hunting. Int J Fuzzy Syst 2018;20:672-86.

4. Tivive FHC, Bouzerdoum A. Toward moving target detection in through-the-wall radar imaging. IEEE Trans Geosci Remote Sensing 2021;59:2028-40.

5. Ni J, Gong T, Gu Y, Zhu J, Fan X. An improved deep residual network-based semantic simultaneous localization and mapping method for monocular vision robot. Comput Intell Neurosci 2020;2020:7490840.

6. Lu X, Mao X, Liu H, Meng X, Rai L. Event camera point cloud feature analysis and shadow removal for road traffic sensing. IEEE Sensors J 2022;22:3358-69.

7. Negri P. Estimating the queue length at street intersections by using a movement feature space approach. IET Image Processing 2014;8:406-16.

8. Sengar SS, Mukhopadhyay S. Motion detection using block based bi-directional optical flow method. Journal of Visual Communication and Image Representation 2017;49:89-103.

9. Chen Y, Wang J, Zhu B, Tang M, Lu H. Pixelwise deep sequence learning for moving object detection. IEEE Trans Circuits Syst Video Technol 2019;29:2567-79.

10. Li J, Pan ZM, Zhang ZH, Zhang H. Dynamic ARMA-based background subtraction for moving objects detection. IEEE Access 2019;7:128659-68.

11. Garcia-Garcia B, Bouwmans T, Silva AJR. Background subtraction in real applications: challenges, current models and future directions. Computer Science Review 2020;35:100204.

12. Cristani M, Farenzena M, Bloisi D, Murino V. Background subtraction for automated multisensor surveillance: a comprehensive review. EURASIP J Adv Signal Process 2010;2010.

13. Javed S, Narayanamurthy P, Bouwmans T, Vaswani N. Robust PCA and robust subspace tracking: a comparative evaluation. In: 2018 IEEE Statistical Signal Processing Workshop (SSP). Freiburg im Breisgau, Germany; 2018. pp. 836-40.

14. Mandal M, Vipparthi SK. An Empirical Review of Deep Learning Frameworks for Change Detection: Model Design, Experimental Frameworks, Challenges and Research Needs. IEEE Transactions on Intelligent Transportation Systems 2021: Article in Press.

15. Minematsu T, Shimada A, Uchiyama H, Taniguchi R. Analytics of deep neural network-based background subtraction. J Imaging 2018;4:78.

16. Giraldo JH, Javed S, Sultana M, Jung SK, Bouwmans T. The emerging field of graph signal processing for moving object segmentation. In: International Workshop on Frontiers of Computer Vision. Virtual, Online; 2021. pp. 31-45.

17. Giraldo JH, Javed S, Bouwmans T. Graph Moving Object Segmentation. IEEE Trans Pattern Anal Mach Intell 2022;44:2485-503.

18. Sengar SS, Mukhopadhyay S. Moving object area detection using normalized self adaptive optical flow. Optik 2016;127:6258-67.

19. Ni J, Chen Y, Chen Y, et al. A survey on theories and applications for self-driving cars based on deep learning methods. Applied Sciences 2020;10:2749.

20. Wang Y, Zhu L, Yu Z. Foreground detection for infrared videos with multiscale 3-D fully convolutional network. IEEE Geosci Remote Sensing Lett 2019;16:712-6.

21. Ni J, Shen K, Chen Y, Cao W, Yang SX. An improved deep network-based scene classification method for self-driving cars. IEEE Trans Instrum Meas 2022;71:1-14.

22. Mahmoudabadi H, Olsen MJ, Todorovic S. Detecting sudden moving objects in a series of digital images with different exposure times. Computer Vision and Image Understanding 2017;158:17-30.

23. Wang C, Cheng J, Chi W, Yan T, Meng MQH. Semantic-aware informative path planning for efficient object search using mobile robot. IEEE Trans Syst Man Cybern, Syst 2021;51:5230-43.

24. Liu Z, An D, Huang X. Moving target shadow detection and global background reconstruction for VideoSAR based on single-frame imagery. IEEE Access 2019;7:42418-25.

25. Talab AMA, Huang Z, Xi F, Haiming L. Moving crack detection based on improved VIBE and multiple filtering in image processing techniques. IJSIP 2015;8:275-86.

26. Gao Y, Cheng P. Full-scale video-based detection of smoke from forest fires combining ViBe and MSER algorithms. Fire Technol 2021;57:1637-66.

27. Huang W, Liu L, Yue C, Li H. The moving target detection algorithm based on the improved visual background extraction. Infrared Physics & Technology 2015;71:518-25.

28. Qiu S, Tang Y, Du Y, Yang S. The infrared moving target extraction and fast video reconstruction algorithm. Infrared Physics & Technology 2019;97:85-92.

29. Yue Y, Xu D, Qian Z, Shi H, Zhang H. AntViBe: improved vibe algorithm based on ant colony clustering under dynamic background. Mathematical Problems in Engineering 2020;2020:1-13.

30. Nagarathinam K, Kathavarayan RS. Moving shadow detection based on stationary wavelet transform and zernike moments. IET Computer Vision 2018;12:787-95.

31. Khare M, Srivastava RK, Khare A. Moving shadow detection and removal-a wavelet transform based approach. IET Computer Vision 2014;8:701-17.

32. Stauffer C, Grimson WEL. Adaptive background mixture models for real-time tracking. In: Proceedings of the 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'99). vol. 2. Fort Collins, CO, USA; 1999. pp. 246-52.

33. KaewTraKulPong P, Bowden R. In: An Improved Adaptive Background Mixture Model for Real-time Tracking with Shadow Detection. Boston, MA: Springer US; 2002. pp. 135-44.

34. Hofmann M, Tiefenbacher P, Rigoll G. Background segmentation with feedback: The Pixel-Based Adaptive Segmenter. In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Providence, RI, United states; 2012. pp. 38-43.

35. Barnich O, Van Droogenbroeck M. ViBE: a powerful random technique to estimate the background in video sequences. In: 2009 IEEE International Conference on Acoustics, Speech and Signal Processing. Taipei, Taiwan; 2009. pp. 945-48.

36. Barnich O, Van Droogenbroeck M. ViBe: a universal background subtraction algorithm for video sequences. IEEE Trans Image Process 2011;20:1709-24.

37. Zhu F, Jiang P, Wang Z. ViBeExt: The extension of the universal background subtraction algorithm for distributed smart camera. In: 2012 International Symposium on Instrumentation Measurement, Sensor Network and Automation (IMSNA). vol. 1. Sanya, Hainan, China; 2012. pp. 164-68.

38. Chen F, Zhu B, Jing W, Yuan L. Removal shadow with background subtraction model ViBe algorithm. In: 2013 2nd International Symposium on Instrumentation and Measurement, Sensor Network and Automation (IMSNA). Toronto, ON, Canada; 2013. pp. 264-69.

39. Yang Y, Han D, Ding J, Yang Y. An improved ViBe for video moving object detection based on evidential reasoning. In: 2016 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI). Baden-Baden, Germany: IEEE; 2016. pp. 26-31.

40. Liu L, Chai Gh, Qu Z. Moving target detection based on improved ghost suppression and adaptive visual background extraction. J Cent South Univ 2021;28:747-59.

41. Bo G, Kefeng S, Daoyin Q, Hongtao Z. Moving object detection based on improved ViBe algorithm. IJSEIA 2015;9:225-32.

42. Zhang X, Liu K, Wang X, Yu C, Zhang T. Moving Shadow Removal Algorithm Based on HSV Color Space. TELKOMNIKA 2014;12.

43. Zhang B, Jiao D, Lv X. A target detection algorithm for SAR images based on regional probability statistics and saliency analysis. International Journal of Remote Sensing 2019;40:1394-410.

44. Tian Y, Wang D, Jia P, Liu J. Moving Object Detection with ViBe and Texture Feature. In: Pacific Rim Conference on Multimedia. Xi'an, China; 2016. pp. 150-59.

45. Liu Z, Yin H, Mi Y, Pu M, Wang S. Shadow Removal by a Lightness-Guided Network With Training on Unpaired Data. IEEE Trans Image Process 2021;30:1853-65.

46. Hu X, Fu CW, Zhu L, Qin J, Heng PA. Direction-aware spatial context features for shadow detection and removal. IEEE Trans Pattern Anal Mach Intell 2020;42:2795-808.

47. Huang W, Kim K, Yang Y, Kim YS. Automatic Shadow Removal by Illuminance in HSV Color Space. csit 2015;3:70-5.

48. Long Z, Zhou X, Zhang X, Wang R, Wu X. Recognition and classification of wire bonding joint via image feature and SVM model. IEEE Trans Compon, Packag Manufact Technol 2019;9:998-1006.

49. Goyette N, Jodoin PM, Porikli F, Konrad J, Ishwar P. Changedetection. net: A new change detection benchmark dataset. In: 2012 IEEE computer society conference on computer vision and pattern recognition workshops. Providence, RI, USA; 2012. pp. 1-8.

50. Zhang H, Qian Y, Wang Y, Chen R, Tian C. A ViBe Based Moving Targets Edge Detection Algorithm and Its Parallel Implementation. Int J Parallel Prog 2020;48:890-908.

51. Zhang E, Li Y, Duan J. Moving object detection based on confidence factor and CSLBP features. The Imaging Science Journal 2016;64:253-61.

Intelligence & Robotics
ISSN 2770-3541 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/