REFERENCES
1. Cowie R, Douglas-cowie E, Tsapatsoulis N, et al. Emotion recognition in human-computer interaction. IEEE Signal Process Mag 2001;18:32-80.
2. Education, Alice Springs Mparntwe. 5E learning model, 284-5 7-38-55 Rule of Personal Communication, 36. feedback 2015;248:50.
3. Parkinson B, Manstead ASR. Current emotion research in social psychology: thinking about emotions and other People. Emotion Review 2015;7:371-80.
4. Waterloo SF, Baumgartner SE, Peter J, Valkenburg PM. Norms of online expressions of emotion: Comparing Facebook, Twitter, Instagram, and WhatsApp. New Media Soc 2018;20:1813-31.
5. LeBlanc VR, McConnell MM, Monteiro SD. Predictable chaos: a review of the effects of emotions on attention, memory and decision making. Adv Health Sci Educ Theory Pract 2015;20:265-82.
6. Luz PM, Brown HE, Struchiner CJ. Disgust as an emotional driver of vaccine attitudes and uptake? A mediation analysis. Epidemiol Infect 2019;147:e182.
7. Yonghao Z. Research on the human-computer interaction design in mobile phones. 2020 International Conference on Computing and Data Science (CDS) IEEE 2020:395-399.
8. Chervyakov N, Lyakhov P, Kaplun D, Butusov D, Nagornov N. Analysis of the quantization noise in discrete wavelet transform filters for image processing. Electronics 2018;7:135.
9. Muslihah I, Muqorobin M. Texture characteristic of local binary pattern on face recognition with probabilistic linear discriminant analysis. IJCIS 2020;1:22-6.
10. Pitaloka DA, Wulandari A, Basaruddin T, Liliana DY. Enhancing CNN with preprocessing stage in automatic emotion recognition. Procedia Computer Science 2017;116:523-9.
11. Nigam S, Singh R, Misra AK. Efficient facial expression recognition using histogram of oriented gradients in wavelet domain. Multimed Tools Appl 2018;77:28725-47.
12. Deshpande NT, Ravishankar S. Face detection and recognition using viola-jones algorithm and fusion of PCA and ANN. Adv Comput Sci Tech 2017;10;5:1173-89.
13. Chen Y, Jiang H, Li C, Jia X, Ghamisi P. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans Geosci Remote Sensing 2016;54:6232-51.
14. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: 2016 Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, 2016, pp. 770-8.
15. Liu ZS, Siu WC, Huang JJ. Image super-resolution via weighted random forest. In: 2017 IEEE International Conference on Industrial Technology (ICIT). IEEE 2017, pp. 1019-23.
16. Hasani B, Mahoor MH. Spatio-temporal facial expression recognition using convolutional neural networks and conditional random fields. In: 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017). IEEE, 2017, pp. 790-5.
17. Minaee S, Minaei M, Abdolrashidi A. Deep-emotion: facial expression recognition using attentional convolutional network. Sensors (Basel) 2021;21:3046.
18. Pham L, Vu TH, Tran TA. Facial expression recognition using residual masking network. In: 2020 25th International Conference on Pattern Recognition (ICPR). IEEE, 2021, pp. 4513-9.
19. Pu L, Zhu L. Differential residual learning for facial expression recognition. In: 2021 The 5th International Conference on Machine Learning and Soft Computing. IEEE, 2021, pp. 103-8.
20. Chowanda A. Separable convolutional neural networks for facial expressions recognition. J Big Data 2021;8:1-17.
21. Lee JH, Kim DH, Jeong SN. Diagnosis of cystic lesions using panoramic and cone beam computed tomographic images based on deep learning neural network. Oral Dis 2020;26:152-8.
22. Lin M, Chen Q, Yan S. Network in network. arXiv preprint arXiv: 1312.4400 2013.
23. Zahara L, Musa P, Wibowo EP, Karim I, Musa SB. The facial emotion recognition (FER-2013) dataset for prediction system of micro-expressions face using the convolutional neural network (CNN) algorithm based raspberry Pi. In: 2020 Fifth International Conference on Informatics and Computing (ICIC). IEEE, 2020, pp. 1-9.
24. Albawi S, Mohammed TA, Al-Zawi S. Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET). IEEE, 2017, pp. 1-6.
25. Agarap AF. Deep learning using rectified linear units (relu). arXiv preprint arXiv: 1312.4400, 2018.
26. Liu Y, Chen Y, Wang J, Niu S, Liu D, Song H. Zero-bias deep neural network for quickest RF signal surveillance. arXiv preprint arXiv: 2110.05797, 2021.
27. Hanin B, Rolnick D. How to start training: The effect of initialization and architecture. arXiv preprint arXiv: 1803.01719, 2018.
28. Datta L. A survey on activation functions and their relation with xavier and he normal initialization. arXiv preprint arXiv: 2004.06632, 2020.
29. Bjorck J, Gomes C, Selman B, Weinberger KQ. Understanding batch normalization. arXiv preprint arXiv: 1806.02375, 2018.
30. Santurkar S, Tsipras D, Ilyas A, Mądry A. How does batch normalization help optimization?. In: Proceedings of the 32nd international conference on neural information processing systems. 2018, pp. 2488-98.
31. You H, Yu L, Tian S, et al. MC-Net: Multiple max-pooling integration module and cross multi-scale deconvolution network. Knowledge-Based Systems 2021;231:107456.
32. Hinton GE, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov R. Improving neural networks by preventing co-adaptation of feature detectors. CoRR 2012;abs/1207.0580. Available from http://arxiv.org/abs/1207.0580.
33. Yarin G, Jiri H, Alex K. Concrete dropout. arXiv preprint arXiv: 1705.07832, 2017.
34. Chen H, Chen A, Xu L, et al. A deep learning CNN architecture applied in smart near-infrared analysis of water pollution for agricultural irrigation resources. Agricultural Water Management 2020;240:106303.
35. Goodfellow IJ, Erhan D, Luc Carrier P, et al. Challenges in representation learning: a report on three machine learning contests. Neural Netw 2015;64:59-63.
36. Song L, Gong D, Li Z, Liu C, Liu W. Occlusion robust face recognition based on mask learning with pairwise differential siamese network. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. IEEE, 2019, pp. 773-82.
37. Shorten C, Khoshgoftaar TM. A survey on image data augmentation for deep learning. J Big Data 2019;6:1-48.
38. Gao X, Saha R, Prasad MR, et al. Fuzz testing based data augmentation to improve robustness of deep neural networks. In: 2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE). IEEE, 2020, pp. 1147-58.
39. Halgamuge MN, Daminda E, Nirmalathas A. Best optimizer selection for predicting bushfire occurrences using deep learning. Nat Hazards 2020;103:845-60.
40. Zhang Z, Sabuncu MR. Generalized cross entropy loss for training deep neural networks with noisy labels. In: 32nd Conference on Neural Information Processing Systems (NeurIPS). 2018.
41. Han Z. Predict final total mark of students with ANN, RNN and Bi-LSTM. Available from http://users.cecs.anu.edu.au/~Tom.Gedeon/conf/ABCs2020/paper/ABCs2020_paper_v2_135.pdf.
42. Li M, Soltanolkotabi M, Oymak S. Gradient descent with early stopping is provably robust to label noise for overparameterized neural networks. In: International conference on artificial intelligence and statistics. PMLR, 2020, pp. 4313-24.
43. Lucey P, Cohn JF, Kanade T, et al. The extended Cohn-Kanade dataset (CK+): A complete dataset for action unit and emotion-specified expression. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops, CVPRW 2010. IEEE, 2010, pp. 94-101.