REFERENCES
1. Kim, S.; Laschi, C.; Trimmer, B. Soft robotics: a bioinspired evolution in robotics. Trends. Biotechnol. 2013, 31, 287-94.
2. Yang, G. Z.; Fischer, P.; Nelson, B. New materials for next-generation robots. Sci. Robot. 2017, 2.
3. Ranzani, T.; Russo, S.; Bartlett, N. W.; Wehner, M.; Wood, R. J. Increasing the dimensionality of soft microstructures through injection-induced self-folding. Adv. Mater. 2018, 30, e1802739.
4. Shen, Z.; Chen, F.; Zhu, X.; Yong, K. T.; Gu, G. Stimuli-responsive functional materials for soft robotics. J. Mater. Chem. B. 2020.
5. Lou, H.; Wang, Y.; Sheng, Y.; et al. Water-induced shape-locking magnetic robots. Adv. Sci. (Weinh). 2024, 11, e2405021.
7. Laschi, C.; Mazzolai, B.; Cianchetti, M. Soft robotics: Technologies and systems pushing the boundaries of robot abilities. Sci. Robot. 2016, 1.
10. Tang, C.; Du, B.; Jiang, S.; et al. A pipeline inspection robot for navigating tubular environments in the sub-centimeter scale. Sci. Robot. 2022, 7, eabm8597.
11. Cianchetti, M.; Laschi, C.; Menciassi, A.; Dario, P. Biomedical applications of soft robotics. Nat. Rev. Mater. 2018, 3, 143-53.
12. Wang, T.; Wu, Y.; Yildiz, E.; Kanyas, S.; Sitti, M. Clinical translation of wireless soft robotic medical devices. Nat. Rev. Bioeng. 2024, 2, 470-85.
13. Law, J.; Chen, H.; Wang, Y.; Yu, J.; Sun, Y. Gravity-resisting colloidal collectives. Sci. Adv. 2022, 8, eade3161.
14. Jeon, S.; Kim, S.; Ha, S.; et al. Magnetically actuated microrobots as a platform for stem cell transplantation. Sci. Robot. 2019, 4.
15. Chen, Z.; Chen, H.; Fang, K.; Liu, N.; Yu, J. Magneto-thermal hydrogel swarms for targeted lesion sealing. Adv. Healthc. Mater. 2025, 14, e2403076.
16. Xie, H.; Sun, M.; Fan, X.; et al. Reconfigurable magnetic microrobot swarm: Multimode transformation, locomotion, and manipulation. Sci. Robot. 2019, 4.
17. Wang, B.; Wang, Q.; Chan, K. F.; et al. tPA-anchored nanorobots for in vivo arterial recanalization at submillimeter-scale segments. Sci. Adv. 2024, 10, eadk8970.
18. Liu, Y.; Xu, B.; Sun, S.; Wei, J.; Wu, L.; Yu, Y. Humidity- and photo-induced mechanical actuation of cross-linked liquid crystal polymers. Adv. Mater. 2017, 29.
19. Lu, X.; Zhang, H.; Fei, G.; et al. Liquid-crystalline dynamic networks doped with gold nanorods showing enhanced photocontrol of actuation. Adv. Mater. 2018, 30, e1706597.
20. Lancia, F.; Ryabchun, A.; Nguindjel, A. D.; Kwangmettatam, S.; Katsonis, N. Mechanical adaptability of artificial muscles from nanoscale molecular action. Nat. Commun. 2019, 10, 4819.
21. Liu, J. A.; Gillen, J. H.; Mishra, S. R.; Evans, E. E.; Tracy, J. B. Photothermally and magnetically controlled reconfiguration of polymer composites for soft robotics. Sci. Adv. 2019, 5, eaaw2897.
22. Kuenstler, A. S.; Kim, H.; Hayward, R. C. Liquid crystal elastomer waveguide actuators. Adv. Mater. 2019, 31, e1901216.
23. Wang, Y.; Li, M.; Chang, J. K.; et al. Light-activated shape morphing and light-tracking materials using biopolymer-based programmable photonic nanostructures. Nat. Commun. 2021, 12, 1651.
24. Ahmed, D.; Baasch, T.; Jang, B.; Pane, S.; Dual, J.; Nelson, B. J. Artificial swimmers propelled by acoustically activated flagella. Nano. Lett. 2016, 16, 4968-74.
25. Ren, L.; Nama, N.; McNeill, J. M.; et al. 3D steerable, acoustically powered microswimmers for single-particle manipulation. Sci. Adv. 2019, 5, eaax3084.
26. Kaynak, M.; Dirix, P.; Sakar, M. S. Addressable acoustic actuation of 3D printed soft robotic microsystems. Adv. Sci. (Weinh). 2020, 7, 2001120.
27. Aghakhani, A.; Yasa, O.; Wrede, P.; Sitti, M. Acoustically powered surface-slipping mobile microrobots. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 3469-77.
28. Zhu, Y.; Deng, K.; Zhou, J.; et al. Shape-recovery of implanted shape-memory devices remotely triggered via image-guided ultrasound heating. Nat. Commun. 2024, 15, 1123.
29. Hao, B.; Wang, X.; Dong, Y.; et al. Focused ultrasound enables selective actuation and Newton-level force output of untethered soft robots. Nat. Commun. 2024, 15, 5197.
30. Gladman, A. S.; Matsumoto, E. A.; Nuzzo, R. G.; Mahadevan, L.; Lewis, J. A. Biomimetic 4D printing. Nat. Mater. 2016, 15, 413-8.
31. Li, H.; Go, G.; Ko, S. Y.; Park, J.; Park, S. Magnetic actuated pH-responsive hydrogel-based soft micro-robot for targeted drug delivery. Smart. Mater. Struct. 2016, 25, 027001.
32. Cangialosi, A.; Yoon, C.; Liu, J.; et al. DNA sequence-directed shape change of photopatterned hydrogels via high-degree swelling. Science 2017, 357, 1126-30.
33. Shin, B.; Ha, J.; Lee, M.; et al. Hygrobot: A self-locomotive ratcheted actuator powered by environmental humidity. Sci. Robot. 2018, 3.
34. Mu, J.; Wang, G.; Yan, H.; et al. Molecular-channel driven actuator with considerations for multiple configurations and color switching. Nat. Commun. 2018, 9, 590.
35. Qin, H.; Zhang, T.; Li, N.; Cong, H. P.; Yu, S. H. Anisotropic and self-healing hydrogels with multi-responsive actuating capability. Nat. Commun. 2019, 10, 2202.
36. Pena-Francesch, A.; Giltinan, J.; Sitti, M. Multifunctional and biodegradable self-propelled protein motors. Nat. Commun. 2019, 10, 3188.
37. Jiang, Y.; Korpas, L. M.; Raney, J. R. Bifurcation-based embodied logic and autonomous actuation. Nat. Commun. 2019, 10, 128.
38. Cao, J.; Zhou, C.; Su, G.; et al. Arbitrarily 3D configurable hygroscopic robots with a covalent-noncovalent interpenetrating network and self-healing ability. Adv. Mater. 2019, 31, e1900042.
39. Kong, L.; Ambrosi, A.; Nasir, M. Z. M.; Guan, J.; Pumera, M. Self-propelled 3D-printed “aircraft carrier” of light-powered smart micromachines for large-volume nitroaromatic explosives removal. Adv. Funct. Mater. 2019, 29, 1903872.
40. Kotikian, A.; Truby, R. L.; Boley, J. W.; White, T. J.; Lewis, J. A. 3D printing of liquid crystal elastomeric actuators with spatially programed nematic order. Adv. Mater. 2018, 30, 1706164.
41. Jin, B.; Song, H.; Jiang, R.; Song, J.; Zhao, Q.; Xie, T. Programming a crystalline shape memory polymer network with thermo- and photo-reversible bonds toward a single-component soft robot. Sci. Adv. 2018, 4, eaao3865.
42. Kotikian, A.; McMahan, C.; Davidson, E. C.; et al. Untethered soft robotic matter with passive control of shape morphing and propulsion. Sci. Robot. 2019, 4, eaax7044.
43. Wang, Y.; Huang, W.; Wang, Y.; et al. Stimuli-responsive composite biopolymer actuators with selective spatial deformation behavior. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 14602-8.
44. Kratochvil, B. E., Kummer, M. P., Erni, S., et al. MiniMag: A hemispherical electromagnetic system for 5-DOF wireless micromanipulation. In Experimental Robotics; Khatib, O., Kumar, V., Sukhatme, G., Eds.; Springer Tracts in Advanced Robotics, Vol. 79; Springer Berlin Heidelberg, 2014; pp 317-29.
45. Kummer, M. P.; Abbott, J. J.; Kratochvil, B. E.; Borer, R.; Sengul, A.; Nelson, B. J. OctoMag: an electromagnetic system for 5-DOF wireless micromanipulation. IEEE. Trans. Robot. 2010, 26, 1006-17.
46. Venkiteswaran, V. K.; Tan, D. K.; Misra, S. Tandem actuation of legged locomotion and grasping manipulation in soft robots using magnetic fields. Extreme. Mech. Lett. 2020, 41, 101023.
47. Fan, X.; Hu, Q.; Sun, L.; Xie, H.; Sun, H.; Yang, Z. Large-scale swarm control of microrobots by a hybrid-style magnetic actuation system. IEEE. Trans. Ind. Electron. 2024, 71, 10998-1008.
48. Sikorski, J.; Denasi, A.; Bucchi, G.; Scheggi, S.; Misra, S. Vision-based 3-D control of magnetically actuated catheter using BigMag - an array of mobile electromagnetic coils. IEEE/ASME. Trans. Mechatron. 2019, 24, 505-16.
49. Yu, J.; Jin, D.; Chan, K. F.; Wang, Q.; Yuan, K.; Zhang, L. Active generation and magnetic actuation of microrobotic swarms in bio-fluids. Nat. Commun. 2019, 10, 5631.
50. Du, X.; Wang, Y.; Law, J.; et al. Active exploration and reconstruction of vascular networks using microrobot swarms. Nat. Mach. Intell. 2025, 7, 553-64.
51. Yan, X.; Zhou, Q.; Vincent, M.; et al. Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci. Robot. 2017, 2, eaaq1155.
52. Xu, C.; Yang, Z.; Lum, G. Z. Small-scale magnetic actuators with optimal six degrees-of-freedom. Adv. Mater. 2021, 33, e2100170.
53. Huang, C.; Lai, Z.; Wu, X.; Xu, T. Multimodal locomotion and cargo transportation of magnetically actuated quadruped soft microrobots. Cyborg. Bionic. Syst. 2022, 2022, 0004.
54. Wang, C.; Puranam, V. R.; Misra, S.; Venkiteswaran, V. K. A Snake-inspired multi-segmented magnetic soft robot towards medical applications. IEEE. Robot. Autom. Lett. 2022, 7, 5795-802.
55. Peyer, K. E.; Zhang, L.; Nelson, B. J. Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale 2013, 5, 1259-72.
56. Gao, Y.; Sprinkle, B.; Springer, E.; Marr, D. W. M.; Wu, N. Rolling of soft microbots with tunable traction. Sci. Adv. 2023, 9, eadg0919.
57. Hu, W.; Lum, G. Z.; Mastrangeli, M.; Sitti, M. Small-scale soft-bodied robot with multimodal locomotion. Nature 2018, 554, 81-5.
58. Li, Z.; Lai, Y. P.; Diller, E. 3D printing of multilayer magnetic miniature soft robots with programmable magnetization. Adv. Intell. Syst. 2023, 6, 2300052.
59. Xu, T.; Zhang, J.; Salehizadeh, M.; Onaizah, O.; Diller, E. Millimeter-scale flexible robots with programmable three-dimensional magnetization and motions. Sci. Robot. 2019, 4, eaav4494.
60. Zhang, J.; Ren, Z.; Hu, W.; et al. Voxelated three-dimensional miniature magnetic soft machines via multimaterial heterogeneous assembly. Sci. Robot. 2021, 6, eabf0112.
61. Dong, Y.; Wang, L.; Xia, N.; et al. Untethered small-scale magnetic soft robot with programmable magnetization and integrated multifunctional modules. Sci. Adv. 2022, 8, eabn8932.
62. Zhang, S.; Ke, X.; Jiang, Q.; Ding, H.; Wu, Z. Programmable and reprocessable multifunctional elastomeric sheets for soft origami robots. Sci. Robot. 2021, 6, eabd6107.
63. Xia, N.; Jin, B.; Jin, D.; et al. Decoupling and reprogramming the wiggling motion of midge larvae using a soft robotic platform. Adv. Mater. 2022, 34, e2109126.
64. Won, S.; Kim, S.; Park, J. E.; Jeon, J.; Wie, J. J. On-demand orbital maneuver of multiple soft robots via hierarchical magnetomotility. Nat. Commun. 2019, 10, 4751.
65. Wang, Y.; Du, X.; Zhang, H.; Zou, Q.; Law, J.; Yu, J. Amphibious miniature soft jumping robot with on-demand in-flight maneuver. Adv. Sci. (Weinh). 2023, 10, e2207493.
66. Huang, H. W.; Uslu, F. E.; Katsamba, P.; Lauga, E.; Sakar, M. S.; Nelson, B. J. Adaptive locomotion of artificial microswimmers. Sci. Adv. 2019, 5, eaau1532.
67. Ren, Z.; Zhang, R.; Soon, R. H.; et al. Soft-bodied adaptive multimodal locomotion strategies in fluid-filled confined spaces. Sci. Adv. 2021, 7, eabh2022.
68. Yang, L.; Zhang, T.; Huang, H.; Ren, H.; Shang, W.; Shen, Y. An On-Wall-Rotating Strategy for Effective Upstream motion of untethered millirobot: principle, design, and demonstration. IEEE. Trans. Robot. 2023, 39, 2419-28.
69. Ren, Z.; Hu, W.; Dong, X.; Sitti, M. Multi-functional soft-bodied jellyfish-like swimming. Nat. Commun. 2019, 10, 2703.
70. Sun, M.; Tian, C.; Mao, L.; et al. Reconfigurable magnetic slime robot: deformation, adaptability, and multifunction. Adv. Funct. Mater. 2022, 32, 2112508.
71. Wu, Y.; Zhang, S.; Yang, Y.; Li, Z.; Wei, Y.; Ji, Y. Locally controllable magnetic soft actuators with reprogrammable contraction-derived motions. Sci. Adv. 2022, 8, eabo6021.
72. Yang, X.; Shang, W.; Lu, H.; et al. An agglutinate magnetic spray transforms inanimate objects into millirobots for biomedical applications. Sci. Robot. 2020, 5, eabc8191.
73. Kim, H. J.; Koo, J. H.; Lee, S.; Hyeon, T.; Kim, D. Materials design and integration strategies for soft bioelectronics in digital healthcare. Nat. Rev. Mater. 2025, 10, 654-73.
74. Sun, B.; Jia, R.; Yang, H.; et al. Magnetic arthropod millirobots fabricated by 3D-printed hydrogels. Adv. Intell. Syst. 2021, 4, 2100139.
75. Chen, Z.; Wang, Y.; Chen, H.; et al. A magnetic multi-layer soft robot for on-demand targeted adhesion. Nat. Commun. 2024, 15, 644.
76. Kim, Y.; Parada, G. A.; Liu, S.; Zhao, X. Ferromagnetic soft continuum robots. Sci. Robot. 2019, 4, eaax7329.
77. Wang, T.; Ugurlu, H.; Yan, Y.; et al. Adaptive wireless millirobotic locomotion into distal vasculature. Nat. Commun. 2022, 13, 4465.
78. Liu, X.; Wang, L.; Xiang, Y.; et al. Magnetic soft microfiberbots for robotic embolization. Sci. Robot. 2024, 9, eadh2479.
79. Wang, H.; Zhu, Z.; Jin, H.; Wei, R.; Bi, L.; Zhang, W. Magnetic soft robots: Design, actuation, and function. J. Alloys. Compd. 2022, 922, 166219.
80. Ebrahimi, N.; Bi, C.; Cappelleri, D. J.; et al. Magnetic actuation methods in bio/soft robotics. Adv. Funct. Mater. 2020, 31, 2005137.
81. Chen, J.; Jin, D.; Wang, Q.; Ma, X. Programming ferromagnetic soft materials for miniature soft robots: design, fabrication, and applications. J. Mater. Sci. &. Technol. 2025, 219, 271-87.
82. Eshaghi, M.; Ghasemi, M.; Khorshidi, K. Design, manufacturing and applications of small-scale magnetic soft robots. Extreme. Mech. Lett. 2021, 44, 101268.
83. Malappuram, K. M.; Chatterjee, K.; Homer-Vanniasinkam, S.; Nain, A. Clinical challenges in soft robotics. Adv. Robot. Res. 2025, 1, 202400018.
84. Zhao, X.; Kim, J.; Cezar, C. A.; et al. Active scaffolds for on-demand drug and cell delivery. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 67-72.
85. Goudu, S. R.; Yasa, I. C.; Hu, X.; Ceylan, H.; Hu, W.; Sitti, M. Biodegradable untethered magnetic hydrogel Milli-Grippers. Adv. Funct. Mater. 2020, 30, 2004975.
86. Cezar, C. A.; Kennedy, S. M.; Mehta, M.; et al. Biphasic ferrogels for triggered drug and cell delivery. Adv. Healthc. Mater. 2014, 3, 1869-76.
87. Wang, H.; Hou, Y.; Chen, L.; et al. Superparamagnetic hydrogels: Precision-driven platforms for biomedicine, robotics, and environmental remediation. Biomed. Technol. 2025, 10, 100084.
88. Ikeda, J.; Takahashi, D.; Watanabe, M.; Kawai, M.; Mitsumata, T. Particle size in secondary particle and magnetic response for carrageenan magnetic hydrogels. Gels 2019, 5, 39.
89. Zhou, C.; Wang, C.; Xu, K.; et al. Hydrogel platform with tunable stiffness based on magnetic nanoparticles cross-linked GelMA for cartilage regeneration and its intrinsic biomechanism. Bioact. Mater. 2023, 25, 615-28.
90. Zhang, H.; Hua, S.; He, C.; et al. Application of 4D-printed magnetoresponsive FOGS hydrogel scaffolds in auricular cartilage regeneration. Adv. Healthc. Mater. 2025, 14, e2404488.
91. Ge, T. J.; Roquero, D. M.; Holton, G. H.; et al. A magnetic hydrogel for the efficient retrieval of kidney stone fragments during ureteroscopy. Nat. Commun. 2023, 14, 3711.
92. Shen, Y.; Cao, J.; Zhou, E.; et al. Tough hydrogel-coated containment capsule of magnetic liquid metal for remote gastrointestinal operation. Natl. Sci. Rev. 2025, 12, nwaf042.
93. Wu, W. S.; Yan, X.; Chen, S.; et al. Minimally invasive delivery of percutaneous ablation agent via magnetic colloidal hydrogel injection for treatment of hepatocellular carcinoma. Adv. Mater. 2024, 36, e2309770.
94. Wang, B.; Shen, J.; Huang, C.; et al. Magnetically driven biohybrid blood hydrogel fibres for personalized intracranial tumour therapy under fluoroscopic tracking. Nat. Biomed. Eng. 2025, 9, 1471-85.
95. Londhe, P. V.; Londhe, M. V.; Salunkhe, A. B.; et al. Magnetic hydrogel (MagGel): an evolutionary pedestal for anticancer therapy. Coord. Chem. Rev. 2025, 522, 216228.
96. Xu, Y.; Cai, F.; Zhou, Y.; et al. Magnetically attracting hydrogel reshapes iron metabolism for tissue repair. Sci. Adv. 2024, 10, eado7249.
97. Xu, Z.; Wu, Z.; Yuan, M.; Chen, Y.; Ge, W.; Xu, Q. Versatile magnetic hydrogel soft capsule microrobots for targeted delivery. iScience 2023, 26, 106727.
98. Liu, X.; Yang, Y.; Inda, M. E.; et al. Magnetic living hydrogels for intestinal localization, retention, and diagnosis. Adv. Funct. Mater. 2021, 31, 2010918.
99. Chen, H.; Law, J.; Wang, Y.; et al. Active microgel particle swarms for intrabronchial targeted delivery. Sci. Adv. 2025, 11, eadr3356.
100. Viteri, A.; Espanol, M.; Ginebra, M.; García-Torres, J. Tailoring drug release from skin-like chitosan-agarose biopolymer hydrogels containing Fe3O4 nanoparticles using magnetic fields. Chem. Eng. J. 2025, 517, 164214.
101. Li, H.; Jiang, S.; Deng, Q.; et al. Programmable magnetic hydrogel robots with drug delivery and physiological sensing capabilities. Mater. Today. 2025, 87, 66-76.
102. Hu, X.; Ge, Z.; Wang, X.; Jiao, N.; Tung, S.; Liu, L. Multifunctional thermo-magnetically actuated hybrid soft millirobot based on 4D printing. Compos. Part. B-Eng. 2022, 228, 109451.
103. Chung, H. J.; Parsons, A. M.; Zheng, L. Magnetically controlled soft robotics utilizing elastomers and gels in actuation: a review. Adv. Intell. Syst. 2020, 3, 2000186.
104. Breger, J. C.; Yoon, C.; Xiao, R.; et al. Self-folding thermo-magnetically responsive soft microgrippers. ACS. Appl. Mater. Interfaces. 2015, 7, 3398-405.
105. Li, X.; Fan, D.; Sun, Y.; et al. Porous magnetic soft grippers for fast and gentle grasping of delicate living objects. Adv. Mater. 2024, 36, e2409173.
106. Liu, Z.; Li, M.; Dong, X.; Ren, Z.; Hu, W.; Sitti, M. Creating three-dimensional magnetic functional microdevices via molding-integrated direct laser writing. Nat. Commun. 2022, 13, 2016.
107. Xia, N.; Jin, D.; Pan, C.; et al. Dynamic morphological transformations in soft architected materials via buckling instability encoded heterogeneous magnetization. Nat. Commun. 2022, 13, 7514.
108. Chi, Y.; Evans, E. E.; Clary, M. R.; et al. Magnetic kirigami dome metasheet with high deformability and stiffness for adaptive dynamic shape-shifting and multimodal manipulation. Sci. Adv. 2024, 10, eadr8421.
109. Lin, D.; Yang, F.; Gong, D.; Li, R. Bio-inspired magnetic-driven folded diaphragm for biomimetic robot. Nat. Commun. 2023, 14, 163.
110. Min, H.; Bae, D.; Jang, S.; et al. Stiffness-tunable velvet worm-inspired soft adhesive robot. Sci. Adv. 2024, 10, eadp8260.
111. Zhao, X.; Zhou, Y.; Xu, J.; et al. Soft fibers with magnetoelasticity for wearable electronics. Nat. Commun. 2021, 12, 6755.
112. Dong, X.; Xiao, B.; Vu, H.; Lin, H.; Sitti, M. Millimeter-scale soft capsules for sampling liquids in fluid-filled confined spaces. Sci. Adv. 2024, 10, eadp2758.
113. Wang, H.; Chen, S.; Li, H.; et al. A liquid gripper based on phase transitional metallic ferrofluid. Adv. Funct. Mater. 2021, 31, 2100274.
114. Zhang, J.; Wang, X.; Wang, Z.; et al. Wetting ridge assisted programmed magnetic actuation of droplets on ferrofluid-infused surface. Nat. Commun. 2021, 12, 7136.
115. Ramos-sebastian, A.; Lee, J. S.; Kim, S. H. Multimodal locomotion of magnetic droplet robots using orthogonal pairs of coils. Adv. Intell. Syst. 2023, 5, 2300133.
116. Sun, M.; Wu, Y.; Zhang, J.; et al. Versatile, modular, and customizable magnetic solid-droplet systems. Proc. Natl. Acad. Sci. U. S. A. 2024, 121, e2405095121.
117. Chen, G.; Tat, T.; Zhou, Y.; et al. Neural network-assisted personalized handwriting analysis for Parkinson’s disease diagnostics. Nat. Chem. Eng. 2025, 2, 358-68.
118. Chen, L.; Yu, H.; Yang, J.; et al. Facile synthesis of silicone oil-based ferrofluid: toward smart materials and soft robots. ACS. Nano. 2025, 19, 8904-15.
119. Fan, X.; Dong, X.; Karacakol, A. C.; Xie, H.; Sitti, M. Reconfigurable multifunctional ferrofluid droplet robots. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 27916-26.
120. Fan, X.; Jiang, Y.; Li, M.; et al. Scale-reconfigurable miniature ferrofluidic robots for negotiating sharply variable spaces. Sci. Adv. 2022, 8, eabq1677.
121. Sun, M.; Yang, S.; Jiang, J.; Zhang, L. Horizontal and vertical coalescent microrobotic collectives using ferrofluid droplets. Adv. Mater. 2023, 35, e2300521.
122. Sun, M.; Sun, B.; Park, M.; et al. Individual and collective manipulation of multifunctional bimodal droplets in three dimensions. Sci. Adv. 2024, 10, eadp1439.
123. Sun, M.; Hao, B.; Yang, S.; Wang, X.; Majidi, C.; Zhang, L. Exploiting ferrofluidic wetting for miniature soft machines. Nat. Commun. 2022, 13, 7919.
124. Shen, Y.; Jin, D.; Fu, M.; et al. Reactive wetting enabled anchoring of non-wettable iron oxide in liquid metal for miniature soft robot. Nat. Commun. 2023, 14, 6276.
125. Ji, Y.; Bai, X.; Sun, H.; et al. Biocompatible ferrofluid-based millirobot for tumor photothermal therapy in near-infrared-II window. Adv. Healthc. Mater. 2024, 13, e2302395.
126. Zhou, W.; Xiong, P.; Ge, Y.; et al. Amoeba-inspired soft robot for integrated tumor/infection therapy and painless postoperative drainage. Adv. Sci. (Weinh). 2024, 11, e2407148.
127. Ren, E.; Hu, J.; Mei, Z.; et al. Water-stable magnetic lipiodol micro-droplets as a miniaturized robotic tool for drug delivery. Adv. Mater. 2025, 37, e2412187.
128. Li, Z.; Zhang, S.; Wang, Q.; et al. Untethered & stiffness-tunable ferromagnetic liquid robots for cleaning thrombus in complex blood vessels. Adv. Mater. 2024, 36, e2409142.
129. Zhang, Z.; Heron, J. T.; Pena‐Francesch, A. Adaptive magnetoactive soft composites for modular and reconfigurable actuators. Adv. Funct. Mater. 2023, 33, 2215248.
130. Zou, B.; Liang, Z.; Zhong, D.; et al. Magneto-thermomechanically reprogrammable mechanical metamaterials. Adv. Mater. 2023, 35, e2207349.
131. Seong, M.; Sun, K.; Kim, S.; et al. Multifunctional magnetic muscles for soft robotics. Nat. Commun. 2024, 15, 7929.
132. Zhao, W.; Liu, L.; Zhang, F.; Leng, J.; Liu, Y. Shape memory polymers and their composites in biomedical applications. Mater. Sci. Eng. C. Mater. Biol. Appl. 2019, 97, 864-83.
133. Alapan, Y.; Karacakol, A. C.; Guzelhan, S. N.; Isik, I.; Sitti, M. Reprogrammable shape morphing of magnetic soft machines. Sci. Adv. 2020, 6, eabc6414.
134. Ze, Q.; Kuang, X.; Wu, S.; et al. Magnetic shape memory polymers with integrated multifunctional shape manipulation. Adv. Mater. 2020, 32, e1906657.
135. Zhang, J.; Guo, Y.; Hu, W.; Soon, R. H.; Davidson, Z. S.; Sitti, M. Liquid crystal elastomer-based magnetic composite films for reconfigurable shape-morphing soft miniature machines. Adv. Mater. 2021, 33, e2006191.
136. Sun, Y.; Wang, L.; Zhu, Z.; et al. A 3D-printed ferromagnetic liquid crystal elastomer with programmed dual-anisotropy and multi-responsiveness. Adv. Mater. 2023, 35, e2302824.
137. Espíndola-Pérez, E. R.; Campo, J.; Sánchez-Somolinos, C. Multimodal and multistimuli 4D-printed magnetic composite liquid crystal elastomer actuators. ACS. Appl. Mater. Interfaces. 2024, 16, 2704-15.
138. Jiang, J.; Ma, Y.; Cheng, R.; Zhao, Y. A porous multi-stimuli-responsive liquid crystal elastomer actuator enabled by MOF loading. Adv. Funct. Mater. 2023, 34, 2313625.
139. Tang, D.; Zhang, C.; Sun, H.; et al. Origami-inspired magnetic-driven soft actuators with programmable designs and multiple applications. Nano. Energy. 2021, 89, 106424.
140. Gong, X.; Tan, K.; Deng, Q.; Shen, S. Athermal shape memory effect in magnetoactive elastomers. ACS. Appl. Mater. Interfaces. 2020, 12, 16930-6.
141. Diller, E.; Zhuang, J.; Zhan Lum, G.; Edwards, M. R.; Sitti, M. Continuously distributed magnetization profile for millimeter-scale elastomeric undulatory swimming. Appl. Phys. Lett. 2014, 104, 174101.
142. Kim, Y.; Yuk, H.; Zhao, R.; Chester, S. A.; Zhao, X. Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 2018, 558, 274-9.
143. Ansari, M. H. D.; Iacovacci, V.; Pane, S.; et al. 3D printing of small-scale soft robots with programmable magnetization. Adv. Funct. Mater. 2023, 33, 2211918.
144. Kokkinis, D.; Schaffner, M.; Studart, A. R. Multimaterial magnetically assisted 3D printing of composite materials. Nat. Commun. 2015, 6, 8643.
145. Ma, C.; Wu, S.; Ze, Q.; et al. Magnetic multimaterial printing for multimodal shape transformation with tunable properties and shiftable mechanical behaviors. ACS. Appl. Mater. Interfaces. 2021, 13, 12639-48.
146. Erin, O.; Boyvat, M.; Tiryaki, M. E.; Phelan, M.; Sitti, M. Magnetic resonance imaging system-driven medical robotics. Adv. Intell. Syst. 2020, 2, 1900110.
147. Muthana, M.; Kennerley, A. J.; Hughes, R.; et al. Directing cell therapy to anatomic target sites in vivo with magnetic resonance targeting. Nat. Commun. 2015, 6, 8009.
148. Krishnan, K. M. Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy. IEEE. Trans. Magn. 2010, 46, 2523-58.
149. Mody, V. V.; Singh, A.; Wesley, B. Basics of magnetic nanoparticles for their application in the field of magnetic fluid hyperthermia. Eur. J. Nanomed. 2013, 5, 11-21.
150. Shasha, C.; Krishnan, K. M. Nonequilibrium dynamics of magnetic nanoparticles with applications in biomedicine. Adv. Mater. 2021, 33, e1904131.
151. Law, J.; Yu, J.; Tang, W.; Gong, Z.; Wang, X.; Sun, Y. Micro/Nanorobotic swarms: from fundamentals to functionalities. ACS. Nano. 2023, 17, 12971-99.
152. Wang, Y.; Shen, J.; Handschuh-Wang, S.; Qiu, M.; Du, S.; Wang, B. Microrobots for targeted delivery and therapy in digestive system. ACS. Nano. 2023, 17, 27-50.
153. Donohue, V. E.; McDonald, F.; Evans, R. In vitro cytotoxicity testing of neodymium-iron-boron magnets. J. Appl. Biomater. 1995, 6, 69-74.
154. Francis, A.; Yang, Y.; Virtanen, S.; Boccaccini, A. R. Iron and iron-based alloys for temporary cardiovascular applications. J. Mater. Sci. Mater. Med. 2015, 26, 138.
156. Hopp, M.; Rogaschewski, S.; Groth, T. Testing the cytotoxicity of metal alloys used as magnetic prosthetic devices. J. Mater. Sci. Mater. Med. 2003, 14, 335-45.
157. Gunduz, S.; Albadawi, H.; Oklu, R. Robotic devices for minimally invasive endovascular interventions: a new dawn for interventional radiology. Adv. Intell. Syst. 2020, 3, 2000181.
158. Luu, C. H.; Nguyen, N. T.; Ta, H. T. Unravelling surface modification strategies for preventing medical device-induced thrombosis. Adv. Healthc. Mater. 2024, 13, e2301039.
160. Dreyfus, R.; Boehler, Q.; Lyttle, S.; et al. Dexterous helical magnetic robot for improved endovascular access. Sci. Robot. 2024, 9, eadh0298.
161. Hartmann, F.; Baumgartner, M.; Kaltenbrunner, M. Becoming sustainable, the new frontier in soft robotics. Adv. Mater. 2021, 33, e2004413.
162. Yildiz, E.; Bozuyuk, U.; Yildiz, E.; et al. Magnetically controllable and degradable milliscale swimmers as intraocular drug implants. Adv. Sci. (Weinh). 2025, 12, e07569.
163. Yu, Y.; Yuk, H.; Parada, G. A.; et al. Multifunctional “hydrogel skins” on diverse polymers with arbitrary shapes. Adv. Mater. 2019, 31, e1807101.
165. Zhang, D.; Chen, Q.; Shi, C.; et al. Dealing with the foreign-body response to implanted biomaterials: strategies and applications of new materials. Adv. Funct. Mater. 2020, 31, 2007226.
166. Labarrere, C. A.; Dabiri, A. E.; Kassab, G. S. Thrombogenic and inflammatory reactions to biomaterials in medical devices. Front. Bioeng. Biotechnol. 2020, 8, 123.
167. Cabanach, P.; Pena-Francesch, A.; Sheehan, D.; et al. Zwitterionic 3D-printed non-immunogenic stealth microrobots. Adv. Mater. 2020, 32, e2003013.
168. Sun, X.; Zhang, P.; Ye, Z.; et al. A soft capsule for magnetically driven drug delivery based on a hard-magnetic elastomer foam. ACS. Biomater. Sci. Eng. 2023, 9, 6915-25.
169. Liu, R.; Chen, Y.; Zhen, Y.; Zhang, J. A magnetic capsule robot with an exoskeleton to withstand esophageal pressure and delivery drug in stomach. IEEE. Robot. Autom. Lett. 2024, 9, 11802-9.
170. Yang, W.; Wang, X.; Ge, Z.; Yu, H. Magnetically controlled millipede inspired soft robot for releasing drugs on target area in stomach. IEEE. Robot. Autom. Lett. 2024, 9, 3846-53.
171. Darmawan, B. A.; Gong, D.; Park, H.; et al. Magnetically controlled reversible shape-morphing microrobots with real-time X-ray imaging for stomach cancer applications. J. Mater. Chem. B. 2022, 10, 4509-18.
172. Yang, Z.; Xu, C.; Lee, J. X.; Lum, G. Z. Magnetic miniature soft robot with reprogrammable drug-dispensing functionalities: toward advanced targeted combination therapy. Adv. Mater. 2024, 36, e2408750.
173. Ze, Q.; Wu, S.; Dai, J.; et al. Spinning-enabled wireless amphibious origami millirobot. Nat. Commun. 2022, 13, 3118.
174. Yim, S.; Sitti, M. Design and rolling locomotion of a magnetically actuated soft capsule endoscope. IEEE. Trans. Robot. 2012, 28, 183-94.
175. Ze, Q.; Wu, S.; Nishikawa, J.; et al. Soft robotic origami crawler. Sci. Adv. 2022, 8, eabm7834.
176. Sun, Y.; Zhang, W.; Gu, J.; et al. Magnetically driven capsules with multimodal response and multifunctionality for biomedical applications. Nat. Commun. 2024, 15, 1839.
177. Wang, C.; Wu, Y.; Dong, X.; Armacki, M.; Sitti, M. In situ sensing physiological properties of biological tissues using wireless miniature soft robots. Sci. Adv. 2023, 9, eadg3988.
178. Xiao, B.; Xu, Y.; Edwards, S.; Balakumar, L.; Dong, X. Sensing mucus physiological property in situ by wireless millimeter-scale soft robots. Adv. Funct. Mater. 2024, 34, 2307751.
179. Li, Y.; Halwah, A.; Bhuiyan, S. R. A.; Yao, S. Bio-inspired untethered robot-sensor platform for minimally invasive biomedical sensing. ACS. Appl. Mater. Interfaces. 2023, 15, 58839-49.
180. Son, D.; Gilbert, H.; Sitti, M. Magnetically actuated soft capsule endoscope for fine-needle biopsy. Soft. Robot. 2020, 7, 10-21.
181. Soon, R. H.; Yin, Z.; Dogan, M. A.; et al. Pangolin-inspired untethered magnetic robot for on-demand biomedical heating applications. Nat. Commun. 2023, 14, 3320.
182. Yuan, S.; Liang, B.; Wong, P. W.; et al. Magnetic-guided flexible origami robot toward long-term phototherapy of h. pylori in the stomach. In 2024 IEEE International Conference on Robotics and Automation (ICRA), Yokohama, Japan, May 13-17 2024; IEEE, 2024, pp 9851-7.
183. Wei, T.; Hu, Y.; Yang, M.; Shi, C.; Hu, C. A magnetic patch robot with photothermal-activated multi-modality for targeted anti-postoperative adhesion. Int. J. Extrem. Manuf. 2025, 7, 055502.
184. Zheng, S.; Nan, J.; Hoang, M. C.; et al. Magneto-responsive polymeric soft-shell-based capsule endoscopy for high-performance gastrointestinal exploration via morphological shape control. Adv. Intell. Syst. 2023, 6, 2300632.
185. Wang, B.; Chen, Y.; Ye, Z.; et al. Low-friction soft robots for targeted bacterial infection treatment in gastrointestinal tract. Cyborg. Bionic. Syst. 2024, 5, 0138.
186. Liu, Y.; Huang, J.; Liu, C.; et al. Soft millirobot capable of switching motion modes on the fly for targeted drug delivery in the oviduct. ACS. Nano. 2024, 18, 8694-705.
187. Baburova, P. I.; Kladko, D. V.; Lokteva, A.; et al. Magnetic soft robot for minimally invasive urethral catheter biofilm eradication. ACS. Nano. 2023, 17, 20925-38.
188. Liu, W.; Alam, R.; Choi, S. Y.; et al. Untethered microgrippers for biopsy in the upper urinary tract. Adv. Healthc. Mater. 2024, 13, e2401407.
189. Yang, Y.; Wang, J.; Wang, L.; et al. Magnetic soft robotic bladder for assisted urination. Sci. Adv. 2022, 8, eabq1456.
190. Wang, Z.; Weng, D.; Li, Z.; Chen, L.; Ma, Y.; Wang, J. A magnetic-controlled flexible continuum robot with different deformation modes for vascular interventional navigation surgery. Actuators 2023, 12, 247.
191. Pozhitkova, A. V.; Kladko, D. V.; Vinnik, D. A.; Taskaev, S. V.; Vinogradov, V. V. Reprogrammable soft swimmers for minimally invasive thrombus extraction. ACS. Appl. Mater. Interfaces. 2022, 14, 23896-908.
192. Kim, Y.; Genevriere, E.; Harker, P.; et al. Telerobotic neurovascular interventions with magnetic manipulation. Sci. Robot. 2022, 7, eabg9907.
193. Wang, X.; Liu, W.; Luo, Q.; Yao, L.; Wei, F. Thermally drawn-based microtubule soft continuum robot for cardiovascular intervention. ACS. Appl. Mater. Interfaces. 2024, 16, 29783-92.
194. Pancaldi, L.; Noseda, L.; Dolev, A.; et al. Locomotion of sensor-integrated soft robotic devices inside sub-millimeter arteries with impaired flow conditions. Adv. Intell. Syst. 2022, 4, 2100247.
195. Li, Z.; Xu, Q. Multi-section magnetic soft robot with multirobot navigation system for vasculature intervention. Cyborg. Bionic. Syst. 2024, 5, 0188.
196. Zhang, M.; Yang, L.; Yang, H.; et al. A magnetically actuated microcatheter with soft rotatable tip for enhanced endovascular access and treatment efficiency. Sci. Adv. 2025, 11, eadv1682.
197. Peng, Q.; Wang, S.; Han, J.; et al. Thermal and magnetic dual-responsive catheter-assisted shape memory microrobots for multistage vascular embolization. Research. (Wash. D. C). 2024, 7, 0339.
198. Moghimi, S. M.; Andersen, A. J.; Ahmadvand, D.; Wibroe, P. P.; Andresen, T. L.; Hunter, A. C. Material properties in complement activation. Adv. Drug. Delivery. Rev. 2011, 63, 1000-7.
199. Zarei, M.; Lee, G.; Lee, S. G.; Cho, K. Advances in biodegradable electronic skin: material progress and recent applications in sensing, robotics, and human-machine interfaces. Adv. Mater. 2023, 35, e2203193.
200. Choi, Y. S.; Hsueh, Y. Y.; Koo, J.; et al. Stretchable, dynamic covalent polymers for soft, long-lived bioresorbable electronic stimulators designed to facilitate neuromuscular regeneration. Nat. Commun. 2020, 11, 5990.
201. Li, W.; Thian, E. S.; Wang, M.; Wang, Z.; Ren, L. Surface design for antibacterial materials: from fundamentals to advanced strategies. Adv. Sci. (Weinh). 2021, 8, e2100368.
202. Yoshida, M.; Langer, R.; Lendlein, A.; Lahann, J. From advanced biomedical coatings to multi-functionalized biomaterials. J. Macromol. Sci. Part. C-Polym. Rev. 2006, 46, 347-75.
203. Culha, U.; Demir, S. O.; Trimpe, S.; Sitti, M. Learning of sub-optimal gait controllers for magnetic walking soft millirobots. Robot. Sci. Syst. 2020, 2020, 70.
204. Zhao, C.; Park, J.; Root, S. E.; Bao, Z. Skin-inspired soft bioelectronic materials, devices and systems. Nat. Rev. Bioeng. 2024, 2, 671-90.
205. Nan, K.; Feig, V. R.; Ying, B.; et al. Mucosa-interfacing electronics. Nat. Rev. Mater. 2022, 7, 908-25.
206. Khatib, M.; Zhao, E. T.; Wei, S.; et al. High-density soft bioelectronic fibres for multimodal sensing and stimulation. Nature 2025, 645, 656-64.
207. Jiang, Y.; Zhang, Z.; Wang, Y. X.; et al. Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics. Science 2022, 375, 1411-7.
208. Khodagholy, D.; Gelinas, J. N.; Thesen, T.; et al. NeuroGrid: recording action potentials from the surface of the brain. Nat. Neurosci. 2015, 18, 310-5.
209. Xu, N.; LaGrow, T. J.; Anumba, N.; et al. Functional connectivity of the brain across rodents and humans. Front. Neurosci. 2022, 16, 816331.
210. Liu, Y.; Feig, V. R.; Bao, Z. Conjugated polymer for implantable electronics toward clinical application. Adv. Healthc. Mater. 2021, 10, e2001916.
211. Liu, X.; Tang, H.; Li, N.; et al. Miniature magneto-ultrasonic machines for wireless robotic sensing and manipulation. Sci. Robot. 2025, 10, eadu4851.
212. Wang, Q.; Chan, K. F.; Schweizer, K.; et al. Ultrasound doppler-guided real-time navigation of a magnetic microswarm for active endovascular delivery. Sci. Adv. 2021, 7, eabe5914.
213. Erin, O.; Antonelli, D.; Tiryaki, M. E.; Sitti, M. Towards 5-DoF control of an untethered magnetic millirobot via mri gradient coils. In 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, May 31-August 31 2020; IEEE, 2020, pp 6551-7.
214. Tiryaki, M. E.; Elmacıoğlu, Y. G.; Sitti, M. Magnetic guidewire steering at ultrahigh magnetic fields. Sci. Adv. 2023, 9, eadg6438.
215. Jäckle, S.; Eixmann, T.; Schulz-Hildebrandt, H.; Hüttmann, G.; Pätz, T. Fiber optical shape sensing of flexible instruments for endovascular navigation. Int. J. Comput. Assist. Radiol. Surg. 2019, 14, 2137-45.
216. Seva, R. R.; Tan, A. L. S.; Tejero, L. M. S.; Salvacion, M. L. D. S. Multi-dimensional readiness assessment of medical devices. Theor. Iss. Ergon. Sci. 2022, 24, 189-205.
217. Ho, A.; Quick, O. Leaving patients to their own devices? Smart technology, safety and therapeutic relationships. BMC. Med. Ethics. 2018, 19, 18.
218. Lunney, J. K.; Van Goor, A.; Walker, K. E.; Hailstock, T.; Franklin, J.; Dai, C. Importance of the pig as a human biomedical model. Sci. Transl. Med. 2021, 13, eabd5758.







