REFERENCES
1. Veeramuthu, L.; Cho, C. J.; Liang, F. C.; et al. Human skin-inspired electrospun patterned robust strain-insensitive pressure sensors and wearable flexible light-emitting diodes. ACS. Appl. Mater. Interfaces. 2022, 14, 30160-73.
2. Liu, H.; Sun, J.; Zhang, Y.; et al. Bioinspired, piezoelectrically-actuated deployable miniature robots. Mater. Sci. Eng. R. Rep. 2025, 166, 101054.
3. Mohamadzade, S.; Safavi-Mirmahalleh, S.; Habibzadeh, S.; Behboodi-Sadabad, F.; Salami-Kalajahi, M. A review on application of nanomaterials in flexible pressure sensors. Mater. Today. Nano. 2025, 30, 100627.
4. Kweon, O. Y.; Lee, S. J.; Oh, J. H. Wearable high-performance pressure sensors based on three-dimensional electrospun conductive nanofibers. NPG. Asia. Mater. 2018, 10, 540-51.
5. Yan, B.; Zhang, Y.; Li, Z.; Zhou, P.; Mao, Y. Electrospun nanofibrous membrane for biomedical application. SN. Appl. Sci. 2022, 4, 172.
6. Venmathi Maran, B. A.; Jeyachandran, S.; Kimura, M. A review on the electrospinning of polymer nanofibers and its biomedical applications. J. Compos. Sci. 2024, 8, 32.
7. Shin, Y. K.; Shin, Y.; Lee, J. W.; Seo, M. H. Micro-/nano-structured biodegradable pressure sensors for biomedical applications. Biosensors 2022, 12, 952.
8. Ji, G.; Chen, Z.; Li, H.; Awuye, D. E.; Guan, M.; Zhu, Y. Electrospinning-based biosensors for health monitoring. Biosensors 2022, 12, 876.
9. Fu, X.; Li, J.; Li, D.; et al. MXene/ZIF-67/PAN nanofiber film for ultra-sensitive pressure sensors. ACS. Appl. Mater. Interfaces. 2022, 14, 12367-74.
10. Muthusamy, L.; Uppalapati, B.; Bava, M.; Koley, G. P(VDF-TrFE)/carbon black composite thin film based flexible piezoresistive pressure sensor with high sensitivity for low-pressure detection. Mater. Design. 2025, 256, 114201.
11. Luo, Y.; Abidian, M. R.; Ahn, J. H.; et al. Technology roadmap for flexible sensors. ACS. Nano. 2023, 17, 5211-95.
12. Wright, W. F. Early evolution of the thermometer and application to clinical medicine. J. Therm. Biol. 2016, 56, 18-30.
13. Brinkman, W.; Haggan, D.; Troutman, W. A history of the invention of the transistor and where it will lead us. IEEE. J. Solid. State. Circuits. 1997, 32, 1858-65.
14. Riordan, M.; Hoddeson, L.; Herring, C. The invention of the transistor. Rev. Mod. Phys. 1999, 71, S336-45.
15. Kane, S. K.; Morris, M. R.; Wobbrock, J. O. Touchplates: low-cost tactile overlays for visually impaired touch screen users. In Proceedings of the Proceedings of the 15th International ACM SIGACCESS Conference on Computers and Accessibility, Bellevue, USA, 2013. Association for Computing Machinery; 2013.
16. Pyo, S.; Lee, J.; Bae, K.; Sim, S.; Kim, J. Recent progress in flexible tactile sensors for human-interactive systems: from sensors to advanced applications. Adv. Mater. 2021, 33, e2005902.
18. Han, S. T.; Peng, H.; Sun, Q.; et al. An overview of the development of flexible sensors. Adv. Mater. 2017, 29, 1700375.
19. Feiner, R.; Dvir, T. Engineering smart hybrid tissues with built-in electronics. iScience 2020, 23, 100833.
20. Liu, E.; Cai, Z.; Ye, Y.; Zhou, M.; Liao, H.; Yi, Y. An overview of flexible sensors: development, application, and challenges. Sensors 2023, 23, 817.
21. Banitaba, S. N.; Khademolqorani, S.; Jadhav, V. V.; et al. Recent progress of bio-based smart wearable sensors for healthcare applications. Mater. Today. Electron. 2023, 5, 100055.
22. Yan, J.; Chen, A.; Liu, S. Flexible sensing platform based on polymer materials for health and exercise monitoring. Alex. Eng. J. 2024, 86, 405-14.
23. Park, J.; Lee, Y.; Cho, S.; et al. Soft sensors and actuators for wearable human-machine interfaces. Chem. Rev. 2024, 124, 1464-534.
24. Qi, K.; Zhou, Y.; Ou, K.; et al. Weavable and stretchable piezoresistive carbon nanotubes-embedded nanofiber sensing yarns for highly sensitive and multimodal wearable textile sensor. Carbon 2020, 170, 464-76.
25. Ding, S.; Lou, Y.; Niu, Z.; et al. A highly sensitive, breathable, and biocompatible wearable sensor based on nanofiber membrane for pressure and humidity monitoring. Macro. Mater. Eng. 2022, 307, 2200233.
26. Su, Q.; Zou, Q.; Li, Y.; et al. A stretchable and strain-unperturbed pressure sensor for motion interference-free tactile monitoring on skins. Sci. Adv. 2021, 7, eabi4563.
27. Li, Y.; Jiang, D.; An, Y.; Chen, W.; Huang, Z.; Jiang, B. Wearable flexible pressure sensors: an intriguing design towards microstructural functionalization. J. Mater. Chem. A. 2024, 12, 6826-74.
28. Li, T.; Liu, L.; Zhang, D.; Tang, X.; Sun, Q. Recent progress on flexible tactile sensors: from microstructural design to intelligent sensing applications. Mater. Today. Phys. 2025, 57, 101793.
29. Plesco, I.; Dragoman, M.; Strobel, J.; et al. Flexible pressure sensor based on graphene aerogel microstructures functionalized with CdS nanocrystalline thin film. Superlattices. Microstruct. 2018, 117, 418-22.
30. Kim, N.; Chang, Y.; Chen, J.; et al. Piezoelectric pressure sensor based on flexible gallium nitride thin film for harsh-environment and high-temperature applications. Sens. Actuators. A. Phys. 2020, 305, 111940.
31. Jia, X.; Weng, Z.; Qiu, H.; Xue, W.; Liao, N. A sensitive, robust, high temperature resistant flexible piezoelectric sensor based on SiC/AlN hybrid thin films. Surf. Interfaces. 2025, 64, 106419.
32. Xiang, Q.; Luo, S.; Xue, Y.; Liao, N. Flexible and sensitive three-dimension structured indium tin oxide/zinc aluminum oxide/Cu composites thin-films pressure sensors for healthcare monitoring. Surf. Interfaces. 2024, 52, 104854.
33. Zhong, Y.; Li, Y.; Shi, L.; Hu, M.; Cheng, G. Self-powered triboelectric sensor based on micro-pyramid-conformal dome composite structures for texture recognition. Measurement 2025, 256, 118342.
34. Xue, B.; Xie, H.; Zhao, J.; Zheng, J.; Xu, C. Flexible piezoresistive pressure sensor based on electrospun rough polyurethane nanofibers film for human motion monitoring. Nanomaterials 2022, 12, 723.
35. Wang, J.; Zhang, R.; Wang, Y. F.; et al. Highly sensitive, breathable, and superhydrophobic dome structure nonwoven-based flexible pressure sensor utilizing machine learning for handwriting recognition. Int. J. Biol. Macromol. 2025, 300, 139838.
36. Wang, Y.; Zhu, W.; Deng, Y.; et al. High-sensitivity self-powered temperature/pressure sensor based on flexible Bi-Te thermoelectric film and porous microconed elastomer. J. Mater. Sci. Technol. 2022, 103, 1-7.
37. Zhao, H.; Zhang, Y.; Chen, C.; Liu, X.; Wang, G.; Tang, J. Investigation of through-mask electrochemical machining process using a rib-connected photoresist for microcone array with large height-to-diameter ratio. Prec. Eng. 2023, 81, 68-83.
38. Wang, Y.; Sun, Y.; Li, W.; et al. Self-powered temperature pressure sensing arrays with stepped microcone structure and Bi2Te3-based films for deep learning-assisted object recognition. Mater. Today. Phys. 2024, 49, 101588.
39. Shang, X.; Zhang, C.; Cai, C.; Han, L.; Li, Z. Mold-assisted self-assembled electrospun fiber membranes with ordered microstructure arrays for flexible pressure sensors. Chem. Eng. J. 2025, 519, 165111.
40. Liu, Y.; Luo, B.; Liu, H.; et al. 3D printed electrospun nanofiber-based pyramid-shaped solar vapor generator with hierarchical porous structure for efficient desalination. Chem. Eng. J. 2023, 452, 139402.
41. Huang, L.; Huang, X.; Zhang, P.; et al. Flexible capacitive pressure sensor with synergistic effect between double-sided pyramid sponge structure dielectric layer and fiber structure electrode layer. Sens. Actuators. A. Phys. 2024, 369, 115153.
42. Mi, X.; Zhang, C.; Zhang, N.; Wang, Z.; Wang, J. Recyclable flexible pressure, temperature, and humidity multimodal sensors based on micro-pyramidal structures and PVA/choline chloride/ethylene glycol. Sens. Actuators. B. Chem. 2025, 440, 137866.
43. Cao, R.; Chang, F.; Peng, Q.; et al. The ultra-sensitive flexible pressure sensor based on hierarchical micro-wrinkle/pyramid structure for underwater perturbation monitoring. Compos. Commun. 2025, 55, 102312.
44. Chen, Z.; Ma, Y.; Wang, H.; Yu, B.; Qian, L.; Zhao, Z. Starfish-inspired ultrasensitive piezoresistive pressure sensor with an ultra-wide detection range for healthcare and intelligent production. Chem. Eng. J. 2024, 497, 154953.
45. Krebs, F. C. Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol. Energy. Mater. Sol. Cells. 2009, 93, 394-412.
46. Wang, X.; Zhang, M.; Zhang, L.; Xu, J.; Xiao, X.; Zhang, X. Inkjet-printed flexible sensors: from function materials, manufacture process, and applications perspective. Mater. Today. Commun. 2022, 31, 103263.
47. Rossin, A. R. S.; Spessato, L.; da Silva Lima Cardoso, F.; et al. Electrospinning in personal protective equipment for healthcare work. Polym. Bull. 2024, 81, 1957-80.
48. Mokhena, T. C.; Chabalala, M. B.; Mapukata, S.; et al. Electrospun PCL‐based materials for health‐care applications: an overview. Macro. Mater. Eng. 2024, 309, 2300388.
49. Chen, X.; Wang, J.; Zhang, J.; et al. Development and application of electrospun fiber-based multifunctional sensors. Chem. Eng. J. 2024, 486, 150204.
50. Malode, S. J.; Alshehri, M. A.; Shetti, N. P. Revolutionizing human healthcare with wearable sensors for monitoring human strain. Colloids. Surf. B. Biointerfaces. 2025, 246, 114384.
51. Teng, Y.; Song, L.; Shi, J.; Lv, Q.; Hou, S.; Ramakrishna, S. Advancing electrospinning towards the future of biomaterials in biomedical engineering. Regen. Biomater. 2025, 12, rbaf034.
52. Caporalini, S.; Azimi, B.; Zergat, S.; et al. Electrospinning enables opportunity for green and effective antibacterial coatings of medical devices. J. Funct. Biomater. 2025, 16, 249.
53. Venkatesan, H. M.; Arun, A. P. High-performance triboelectric nanogenerators based on Ag-doped ZnO loaded electrospun PVDF nanofiber mats for energy harvesting and healthcare monitoring. Sci. Rep. 2025, 15, 3347.
54. Tören, E. Advancements in portable electrospinning technology for wound healing applications: a comprehensive review. Biomed. Mater. Devices. 2025.
55. Dziemidowicz, K.; Sang, Q.; Wu, J.; et al. Electrospinning for healthcare: recent advancements. J. Mater. Chem. B. 2021, 9, 939-51.
56. Gao, Q.; Agarwal, S.; Greiner, A.; Zhang, T. Electrospun fiber-based flexible electronics: fiber fabrication, device platform, functionality integration and applications. Prog. Mater. Sci. 2023, 137, 101139.
57. Wang, C.; Liu, C.; Shang, F.; et al. Tactile sensing technology in bionic skin: a review. Biosens. Bioelectron. 2023, 220, 114882.
58. Wu, S.; Dong, T.; Li, Y.; et al. State-of-the-art review of advanced electrospun nanofiber yarn-based textiles for biomedical applications. Appl. Mater. Today. 2022, 27, 101473.
59. Zhang, J. H.; Sun, X.; Wang, H.; et al. From 1D to 2D to 3D: electrospun microstructures towards wearable sensing. Chemosensors 2023, 11, 295.
60. Benas, J.; Liang, F.; Venkatesan, M.; et al. Recent development of sustainable self-healable electronic skin applications, a review with insight. Chem. Eng. J. 2023, 466, 142945.
61. Zhu, M.; Zhang, J.; Xu, W.; Xiong, R.; Huang, C. Cellulose-based fibrous materials for self-powered wearable pressure sensor: a mini review. Cellulose 2023, 30, 1981-98.
62. Cao, H.; Chai, S.; Tan, Z.; et al. Recent advances in physical sensors based on electrospinning technology. ACS. Mater. Lett. 2023, 5, 1627-48.
63. Chang, G.; Pan, X.; Hao, Y.; et al. PVDF/ZnO piezoelectric nanofibers designed for monitoring of internal micro-pressure. RSC. Adv. 2024, 14, 11775-83.
64. Zhou, Y.; Zhao, L.; Tao, W.; et al. All-nanofiber network structure for ultrasensitive piezoresistive pressure sensors. ACS. Appl. Mater. Interfaces. 2022, 14, 19949-57.
65. Zhu, M.; Lou, M.; Yu, J.; Li, Z.; Ding, B. Energy autonomous hybrid electronic skin with multi-modal sensing capabilities. Nano. Energy. 2020, 78, 105208.
66. Bao, R.; Tao, J.; Zhao, J.; Dong, M.; Li, J.; Pan, C. Integrated intelligent tactile system for a humanoid robot. Sci. Bull. 2023, 68, 1027-37.
67. Su, M.; Fu, J.; Liu, Z.; et al. All-fabric capacitive pressure sensors with piezoelectric nanofibers for wearable electronics and robotic sensing. ACS. Appl. Mater. Interfaces. 2023, 15, 48683-94.
68. Ramadoss, T. S.; Ishii, Y.; Chinnappan, A.; Ang, M. H.; Ramakrishna, S. Fabrication of pressure sensor using electrospinning method for robotic tactile sensing application. Nanomaterials 2021, 11, 1320.
69. Meena, J. S.; Choi, S. B.; Jung, S. B.; Kim, J. W. Electronic textiles: new age of wearable technology for healthcare and fitness solutions. Mater. Today. Bio. 2023, 19, 100565.
70. Zeleny, J. The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces. Phys. Rev. 1914, 3, 69-91.
71. Anton, F. Process and apparatus for preparing artificial threads. US1975504A. 1934. https://patents.google.com/patent/US1975504A/en. (accessed 8 Jan 2026).
73. Bhardwaj, N.; Kundu, S. C. Electrospinning: a fascinating fiber fabrication technique. Biotechnol. Adv. 2010, 28, 325-47.
74. Aliheidari, N.; Aliahmad, N.; Agarwal, M.; Dalir, H. Electrospun nanofibers for label-free sensor applications. Sensors 2019;19:3587.
75. Zhi, C.; Shi, S.; Si, Y.; Fei, B.; Huang, H.; Hu, J. Recent progress of wearable piezoelectric pressure sensors based on nanofibers, yarns, and their fabrics via electrospinning. Adv. Mater. Technol. 2023, 8, 2201161.
76. Aidana, Y.; Wang, Y.; Li, J.; Chang, S.; Wang, K.; Yu, D. G. Fast dissolution electrospun medicated nanofibers for effective delivery of poorly water-soluble drug. Curr. Drug. Deliv. 2022, 19, 422-35.
77. Wang, X.; Sun, F.; Yin, G.; Wang, Y.; Liu, B.; Dong, M. Tactile-sensing based on flexible PVDF nanofibers via electrospinning: a review. Sensors 2018, 18, 330.
78. Bhadwal, N.; Ben Mrad, R.; Behdinan, K. Review of piezoelectric properties and power output of PVDF and copolymer-based piezoelectric nanogenerators. Nanomaterials , 2023, 13:3170.
79. Islam, M. S.; Ang, B. C.; Andriyana, A.; Afifi, A. M. A review on fabrication of nanofibers via electrospinning and their applications. SN. Appl. Sci. 2019, 1, 1288.
80. Ji, D.; Lin, Y.; Guo, X.; et al. Electrospinning of nanofibres. Nat. Rev. Methods. Primers. 2024, 4, 278.
81. Wang, L.; Ryan, A. J. 1 - Introduction to electrospinning. In Electrospinning for Tissue Regeneration, Bosworth, L.A., Downes, S., Eds.; Woodhead Publishing: 2011; pp. 3-33.
82. Li, D.; Xia, Y. Electrospinning of nanofibers: reinventing the wheel? Adv. Mater. 2004, 16, 1151-70.
83. Ahmed, F. E.; Lalia, B. S.; Hashaikeh, R. A review on electrospinning for membrane fabrication: challenges and applications. Desalination 2015, 356, 15-30.
84. Chinnappan, B. A.; Krishnaswamy, M.; Xu, H.; Hoque, M. E. Electrospinning of biomedical nanofibers/nanomembranes: effects of process parameters. Polymers 2022, 14, 3719.
85. Wang, Z.; Guo, S.; Li, H.; et al. The semiconductor/conductor interface piezoresistive effect in an organic transistor for highly sensitive pressure sensors. Adv. Mater. 2019, 31, e1805630.
86. Aruchamy, K.; Mahto, A.; Nataraj, S. Electrospun nanofibers, nanocomposites and characterization of art: insight on establishing fibers as product. Nano. Struct. Nano. Objects. 2018, 16, 45-58.
87. Bavatharani, C.; Muthusankar, E.; Wabaidur, S. M.; et al. Electrospinning technique for production of polyaniline nanocomposites/nanofibres for multi-functional applications: a review. Synth. Met. 2021, 271, 116609.
88. Suamte, L.; Babu, P. J. Electrospun based functional scaffolds for biomedical engineering: a review. Nano. TransMed. 2025, 4, 100055.
89. Ahmadi Bonakdar, M.; Rodrigue, D. Electrospinning: processes, structures, and materials. Macromol 2024, 4, 58-103.
90. Oliveira Silva Iahnke, A.; Legemann Monte, M.; Sant’anna Cadaval, T. R.; Almeida Pinto, L. A. Electrospinning of gelatin fine fibers loaded with hop waste extract: development, characterization, and application as antioxidant chitosan bilayer films. J. Mol. Liq. 2025, 426, 127364.
91. Joy, N.; Venugopal, D.; Gopinath, A. M.; Samavedi, S. Connecting in situ cone/jet length in electrospinning to fiber diameter and drug release for the rational design of electrospun drug carriers. Chem. Eng. Sci. 2024, 295, 120168.
92. Lima, F. D. A.; Honorato, A. C. S.; Medeiros, G. B.; et al. Analysis of recycled polystyrene electrospinning process: fiber diameter, morphology, and filtration applications. J. Environm. Chem. Eng. 2025, 13, 115435.
93. Kailasa, S.; Reddy, M. S. B.; Maurya, M. R.; Rani, B. G.; Rao, K. V.; Sadasivuni, K. K. Electrospun nanofibers: materials, synthesis parameters, and their role in sensing applications. Macro. Mater. Eng. 2021, 306, 2100410.
94. Zargham, S.; Bazgir, S.; Tavakoli, A.; Rashidi, A. S.; Damerchely, R. The effect of flow rate on morphology and deposition area of electrospun nylon 6 nanofiber. J. Eng. Fibers. Fabr. 2012, 7, 42-9.
95. Munawar, M.; Nilsson, F.; Schubert, D. Tunable diameter of electrospun fibers using empirical scaling laws of electrospinning parameters. Mater. Chem. Phys. 2025, 329, 130009.
96. Poshina, D.; Sokolova, N.; Nono-Tagne, S.; et al. Electrospinning of methacrylated alginate for tissue engineering applications. RSC. Adv. 2024, 14, 38746-56.
97. Jiang, Z.; Zhang, H.; Zhu, M.; et al. Electrospun soy‐protein‐based nanofibrous membranes for effective antimicrobial air filtration. J. Appl. Polym. Sci. 2018, 135, 45766.
98. Angammana, C. J.; Jayaram, S. H. Analysis of the effects of solution conductivity on electrospinning process and fiber morphology. IEEE. Trans. Ind. Appl. 2011, 47, 1109-17.
99. Jalili, R.; Hosseini, S. A.; Morshed, M. The effects of operating parameters on the morphology of electrospun polyacrilonitrile nanofibers. Iran. Polym. J. 2005, 14, 1074-81. https://www.researchgate.net/publication/259182075_The_effects_of_operating_parameters_on_the_morphology_of_electrospun_polyacrilonitrile_nanofibres. (accessed 8 Jan 2026).
100. Nurwaha, D.; Han, W.; Wang, X. Effects of processing parameters on electrospun fiber morphology. J. Text. Inst. 2013, 104, 419-25.
101. Zaidouny, L.; Abou‐Daher, M.; Tehrani‐Bagha, A. R.; Ghali, K.; Ghaddar, N. Electrospun nanofibrous polyvinylidene fluoride‐co‐hexafluoropropylene membranes for oil–water separation. J. Appl. Polym. Sci. 2020, 137, 49394.
102. Malara, A. Environmental concerns on the use of the electrospinning technique for the production of polymeric micro/nanofibers. Sci. Rep. 2024, 14, 8293.
103. Ura, D. P.; Stachewicz, U. Direct electrospinning of short polymer fibers: factors affecting size and quality. Compos. Part. A. Appl. Sci. Manuf. 2024, 181, 108138.
104. Koski, A.; Yim, K.; Shivkumar, S. Effect of molecular weight on fibrous PVA produced by electrospinning. Mater. Lett. 2004, 58, 493-7.
105. Putti, M.; Simonet, M.; Solberg, R.; Peters, G. W. Electrospinning poly(ε-caprolactone) under controlled environmental conditions: influence on fiber morphology and orientation. Polymer 2015, 63, 189-95.
106. Chanthakulchan, A.; Koomsap, P.; Parkhi, A. A.; Supaphol, P. Environmental effects in fibre fabrication using electrospinning-based rapid prototyping. Virtual. Phys. Prototyp. 2015, 10, 227-37.
107. De Vrieze, S.; Van Camp, T.; Nelvig, A.; Hagström, B.; Westbroek, P.; De Clerck, K. The effect of temperature and humidity on electrospinning. J. Mater. Sci. 2009, 44, 1357-62.
108. Li, J.; Hou, M.; Zhu, Q.; Ren, J.; Liu, H. Electrospinning of yttrium-doped carbon fibers with enhanced high temperature stability and oxidation resistance. Ceram. Int. 2025, 51, 40204-11.
109. Zhang, J.; Zhang, Y.; Li, Y.; Wang, P. Textile-based flexible pressure sensors: a review. Polym. Rev. 2022, 62, 65-94.
110. He, Q.; Liu, Y.; Xu, Z.; et al. Superhydrophobic flexible sensors: a review of fabrication methods and applications. Mater. Today. Chem. 2025, 47, 102824.
111. Sahu, D.; Sahu, R. K.; Banothu, Y. N.; Bhattacharya, S.; Pathak, H. Recent advances in room temperature self-healing polymer nanocomposites, compliant electrodes, and design strategies for flexible pressure sensors. Sens. Actuators. A. Phys. 2025, 392, 116695.
112. Xu, C.; Chen, J.; Zhu, Z.; et al. Flexible pressure sensors in human-machine interface applications. Small 2024, 20, e2306655.
113. Chen, J.; Qiu, Q.; Han, Y.; Lau, D. Piezoelectric materials for sustainable building structures: fundamentals and applications. Renew. Sustain. Energy. Rev. 2019, 101, 14-25.
114. Wan, X.; Cong, H.; Jiang, G.; Liang, X.; Liu, L.; He, H. A review on PVDF nanofibers in textiles for flexible piezoelectric sensors. ACS. Appl. Nano. Mater. 2023, 6, 1522-40.
115. Zhu, M.; Yi, Z.; Yang, B.; Lee, C. Making use of nanoenergy from human - nanogenerator and self-powered sensor enabled sustainable wireless IoT sensory systems. Nano. Today. 2021, 36, 101016.
116. Yin, J.; Reddy, V. S.; Chinnappan, A.; Ramakrishna, S.; Xu, L. Electrospun micro/nanofiber with various structures and functions for wearable physical sensors. Polym. Rev. 2023, 63, 715-62.
117. Muganda, J. M.; Jansen, B.; Homburg, E.; van de Burgt, Y.; den Toonder, J. Influence function measurement technique using the direct and indirect piezoelectric effect for surface shape control in adaptive systems. IEEE. Trans. Autom. Sci. Eng. 2022, 19, 994-1002.
118. Li, J.; Bao, R.; Tao, J.; Peng, Y.; Pan, C. Recent progress in flexible pressure sensor arrays: from design to applications. J. Mater. Chem. C. 2018, 6, 11878-92.
119. Behera, A. Piezoelectric materials. In Advanced Materials: an introduction to modern materials science. Behera, A., Ed.; Springer International Publishing: Cham, 2022; pp. 43-76.
120. Aleksiewicz-Drab, E.; Ziaja-Sujdak, A.; Radecki, R.; Staszewski, W. J. Directivity and excitability of ultrasonic shear waves using piezoceramic transducers - numerical modeling and experimental investigations. Sensors 2024, 24, 3462.
121. Teng, D.; Li, Y.; Yang, H. Comparison between 31-mode and 33-mode thin-walled piezoelectric tube hydrophones. In Global Oceans 2020: Singapore - U.S. Gulf Coast, Biloxi, USA. October 05-30, 2020. IEEE; 2020. p. 1-5.
122. Mhiri, M. T.; Chouchane, M.; Guerich, M.; Larbi, W. Modeling and analysis of a macro-fiber piezoelectric bimorph energy harvester operating in d33-Mode using Timoshenko theory. Mech. Adv. Mater. Struct. 2024, 31, 13021-35.
123. Ren, K.; Shen, Y.; Wang, Z. L. Piezoelectric properties of electrospun polymer nanofibers and related energy harvesting applications. Macro. Mater. Eng. 2024, 309, 2300307.
124. Lv, X.; Liu, Y.; Yu, J.; Li, Z.; Ding, B. Smart fibers for self-powered electronic skins. Adv. Fiber. Mater. 2023, 5, 401-28.
125. Cao, C.; Zhou, P.; Wang, J.; et al. Ultrahigh sensitive and rapid-response self-powered flexible pressure sensor based on sandwiched piezoelectric composites. J. Colloid. Interface. Sci. 2024, 664, 902-15.
126. Wu, L.; Xue, J.; Meng, J.; et al. Self‐powered flexible sensor array for dynamic pressure monitoring. Adv. Funct. Mater. 2024, 34, 2316712.
127. Wang, J.; Fu, Y.; Liu, F.; et al. Enhanced self-polarization effect by tuning interfacial binding energy for self-powered flexible piezoelectric pressure sensors. Sens. Actuators. A. Phys. 2024, 374, 115473.
128. Ahmed, A.; Khoso, N. A.; Arain, M. F.; et al. Development of highly flexible piezoelectric PVDF-TRFE/reduced graphene oxide doped electrospun nano-fibers for self-powered pressure sensor. Polymers 2024, 16, 1781.
129. Zhang, Q. M.; Bharti, V.; Kavarnos, G. Poly(vinylidene fluoride) (PVDF) and its copolymers. In Encyclopedia of smart materials. John Wiley & Sons, Inc; 2002.
130. Wu, L.; Jin, Z.; Liu, Y.; et al. Recent advances in the preparation of PVDF-based piezoelectric materials. Nanotechnol. Rev. 2022, 11, 1386-407.
131. Gomes, J.; Serrado Nunes, J.; Sencadas, V.; Lanceros-Mendez, S. Influence of the β-phase content and degree of crystallinity on the piezo- and ferroelectric properties of poly(vinylidene fluoride). Smart. Mater. Struct. 2010, 19, 065010.
132. Wang, X.; Xiang, X.; Xie, J.; Zhao, G.; Li, Z.; Sun, X. Unleashing the potential: strategies for enhancing performance of electrospun PVDF-based piezoelectric nanofibrous membranes. Fibers. Polym. 2024, 25, 4075-98.
133. Su, Y.; Li, W.; Cheng, X.; et al. High-performance piezoelectric composites via β phase programming. Nat. Commun. 2022, 13, 4867.
134. Li, L.; Peng, F.; Zheng, G.; Dai, K.; Liu, C.; Shen, C. Electrospun core-sheath PVDF piezoelectric fiber for sensing application. ACS. Appl. Mater. Interfaces. 2023, 15, 15938-45.
135. Liu, X.; Zhang, M.; Jiang, B.; et al. Process investigation on robust electrospinning of non-aligned and aligned polyvinylidene fluoride nanofiber mats for flexible piezoelectric sensors. Polymers 2024, 16, 816.
136. Amrutha, B.; Anand Prabu, A.; Pathak, M. Enhancing piezoelectric effect of PVDF electrospun fiber through NiO nanoparticles for wearable applications. Heliyon 2024, 10, e29192.
137. Xiong, J.; Wang, L.; Liang, F.; et al. Flexible piezoelectric sensor based on two-dimensional topological network of PVDF/DA composite nanofiber membrane. Adv. Fiber. Mater. 2024, 6, 1212-28.
138. Sahu, M.; Hajra, S.; Lee, K.; Deepti, P.; Mistewicz, K.; Kim, H. J. Piezoelectric nanogenerator based on lead-free flexible PVDF-barium titanate composite films for driving low power electronics. Crystals 2021, 11, 85.
139. Zheng, J.; Wang, Y.; Liu, G.; et al. BaTiO3/PVDF-TrFE skeleton separators with superior ion conductivity and mechanical property integrated for flexible seconds self-charging supercapacitors. J. Power. Sources. 2022, 528, 231213.
140. Kong, H.; Jin, Y.; Li, G.; Zhang, M.; Du, J. Design and fabrication of a hierarchical structured pressure sensor based on BaTiO3/PVDF nanofibers via near‐field electrospinning. Adv. Eng. Mater. 2023, 25, 2201660.
141. Li, J.; Yin, J.; Wee, M. G. V.; Chinnappan, A.; Ramakrishna, S. A self-powered piezoelectric nanofibrous membrane as wearable tactile sensor for human body motion monitoring and recognition. Adv. Fiber. Mater. 2023, 5, 1417-30.
142. Liu, L.; Li, X.; Gang, Y.; et al. Self-powered piezoelectric sensor based on BaTiO3/MWCNTs/PVDF electrospun nanofibers for wireless alarm system. J. Phys. D. Appl. Phys. 2024, 57, 215501.
143. Khazani, Y.; Rafiee, E.; Samadi, A. Piezoelectric fibers-based PVDF-ZnS-carbon nano onions as a flexible nanogenerator for energy harvesting and self-powered pressure sensing. Colloids. Surf. A. Physicochem. Eng. Asp. 2023, 675, 132004.
144. Parangusan, H.; Ponnamma, D.; Al-Maadeed, M. A. A. Stretchable electrospun PVDF-HFP/Co-ZnO nanofibers as piezoelectric nanogenerators. Sci. Rep. 2018, 8, 754.
145. Seyedin, S.; Uzun, S.; Levitt, A.; et al. MXene composite and coaxial fibers with high stretchability and conductivity for wearable strain sensing textiles. Adv. Funct. Mater. 2020, 30, 1910504.
146. Zhang, J.; Yang, T.; Tian, G.; et al. Spatially confined MXene/PVDF nanofiber piezoelectric electronics. Adv. Fiber. Mater. 2024, 6, 133-44.
147. Mahanty, B.; Ghosh, S. K.; Lee, D. High-performance polyaniline-coated electrospun P(VDF-TrFE)/BaTiO3 nanofiber-based flexible piezoelectric nanogenerator. Mater. Today. Nano. 2023, 24, 100421.
148. Ding, Y.; Huang, L. Z.; Ji, X. X.; Ma, M. G. Utilizing electrospinning to fabricate porous polyvinylidene fluoride/cellulose nanocrystalline/MXene films for wearable pressure sensors. Int. J. Biol. Macromol. 2025, 284, 138106.
149. Sun, C.; Liu, H.; Wang, J.; Shan, G.; Ren, T. Flexible piezoelectric sensor based on PVDF/ZnO/MWCNT composites for human motion monitoring. Org. Electron. 2025, 144, 107290.
150. Kisannagar, R. R.; Lee, J.; Park, Y.; Jung, I. Development of a PVDF/1D–2D nanofiller porous structure pressure sensor using near-field electrospinning for human motion and vibration sensing. J. Mater. Chem. C. 2025, 13, 5700-10.
151. Yang, M.; Huang, W.; Chen, R.; Ma, Z. Flexible electrospun nanofibers for tactile sensing and integrated system research. IEEE. Sens. J. 2025, 25, 9-16.
152. Strashilov, V.; Alexieva, G.; Vincent, B.; Nguyen, V. S.; Rouxel, D. Structural impact on piezoelectricity in PVDF and P(VDF-TrFE) thin films. Appl. Phys. A. 2015, 118, 1469-77.
153. Shahzad, A.; Chen, Z.; Haidary, A. A.; Mehmood, A.; Khan, Z. M. Piezoelectric pressure sensors based on GO-modified P (VDF-TrFE) fibers for vacuum applications. J. Mater. Sci. Mater. Electron. 2020, 31, 18627-39.
154. D’anniballe, R.; Zucchelli, A.; Carloni, R. The effect of morphology on poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene)-based soft actuators: films and electrospun aligned nanofiber mats. Sens. Actuators. A. Phys. 2022, 333, 113255.
155. Yang, J.; Luo, X.; Liu, S.; Feng, Y.; Guliakova, A. A.; Zhu, G. Piezoelectric enhancement in P(VDF-TrFE) copolymer films via controlled and template-induced epitaxy. ACS. Appl. Mater. Interfaces. 2024, 16, 38334-44.
156. Li, W.; Xie, A.; Jiang, J.; et al. Fabrication and application of flexible piezoelectric sensor based on electrospun PVDF-TrFE nanofibers. J. Phys. Conf. Ser. 2024, 2740, 012029.
157. Liu, X.; Tong, J.; Wang, J.; et al. BaTiO3/MXene/PVDF-TrFE composite films via an electrospinning method for flexible piezoelectric pressure sensors. J. Mater. Chem. C. 2023, 11, 4614-22.
158. Yaseen, H. M. A.; Park, S. Enhanced power generation by piezoelectric P(VDF-TrFE)/rGO nanocomposite thin film. Nanomaterials 2023, 13, 860.
159. Wu, Z.; Huang, J.; Zhao, Y.; et al. Lotus leaf-inspired superhydrophobic piezoelectric nanofiber films for moisture-proof pressure sensing and energy harvesting. Chem. Eng. J. 2025, 504, 158874.
160. Bagla, A.; Kulkarni, N. D.; Kumari, P.; Saha, A. Development and characterization of a sustainable bamboo–polyvinylidene fluoride electro spun piezoelectric nanogenerator device for smart health monitoring. ACS. Appl. Polym. Mater. 2025, 7, 5584-97.
161. Khadka, A.; Samuel, E.; Joshi, B.; et al. Integrating PVDF-based piezoelectric nanogenerators with highly conductive carbon nanofibers for energy-harvesting applications. Nano. Energy. 2025, 139, 110991.
162. Zhang, L.; Jiang, Y.; Gu, H.; et al. Preparation of high‐performance BTO/PVDF piezoelectric pressure sensors based on soybean rhizobacteria mimicry using electrostatic spinning‐thermal pressing method. J. Appl. Polym. Sci. 2025, 142, e57283.
163. Ma, H.; Zhang, H.; Zhu, M.; Zhang, Y. Flexible pressure sensor based on highly oriented PVDF/ZnONRs@Ag electrospun fibers for directional sensing. ACS. Sens. 2025, 10, 3033-43.
164. Wu, Y.; Tang, C. Y.; Wang, S.; et al. Biomimetic heteromodulus all-fluoropolymer piezoelectric nanofiber mats for highly sensitive acoustic detection. ACS. Appl. Mater. Interfaces. 2025, 17, 21808-18.
165. Kumar, P.; Singh, R.; Sharma, S. K. Electrospun P(VDF-TrFE):LiClO4 hybrid nanofiber-based highly sensitive piezocapacitive pressure sensors for self-powered flexible electronics. ACS. Appl. Electron. Mater. 2025, 7, 5821-31.
166. Fu, Y.; Liu, J.; Zou, J.; et al. Electrospun PAN/BaTiO3/MXene nanofibrous membrane with significantly improved piezoelectric property for self-powered wearable sensor. Chem. Eng. J. 2024, 489, 151495.
167. Xu, L.; Zhang, Q. K.; Hu, Z.; et al. Fully biodegradable piezoelectric nanogenerator based on cellulose/PLLA electrospun fibers with high-performance for mechanical energy harvesting. Colloids. Surf. A. Physicochem. Eng. Asp. 2025, 706, 135813.
168. Zhang, M.; Hu, K.; Meng, Q.; et al. An electrospun cellulose-based nanofiber piezoelectric membrane with enhanced flexibility and pressure sensitivity. J. Mater. Chem. C. 2023, 11, 4766-74.
169. Ma, J.; Lu, Y.; Li, J.; Rong, Z.; Wei, A.; Liu, Z. Flexible pressure sensors based on electrospun PAN fiber films incorporated with graphene/polypyrrole composites and engineered PDMS microstructures. J. Mater. Chem. A. 2025, 13, 22695-709.
170. Silva, L. M. A.; Lopez, J. A. R.; Castro, W. M. A.; Belov, P. A.; Emelianov, N. A. Piezoresponse force microscopy of BaTiO3-chitosan and BaTiO3-polyethylene glycol nanocomposites. MRS. Adv. 2021, 6, 422-6.
171. Amiri, O.; Abdulla, G. L.; Burhan, C. M.; et al. Boost piezocatalytic activity of BaSO4 by coupling it with BaTiO3, Cu:BaTiO3, Fe:BaTiO3, S:BaTiO3 and modify them by sucrose for water purification. Sci. Rep. 2022, 12, 20792.
172. Oh, H. J.; Kim, D. K.; Choi, Y. C.; et al. Fabrication of piezoelectric poly(L-lactic acid)/BaTiO3 fibre by the melt-spinning process. Sci. Rep. 2020, 10, 16339.
173. Mohammed, M. K.; Al-Nafiey, A.; Al-Dahash, G. Manufacturing graphene and graphene-based nanocomposite for piezoelectric pressure sensor application: a review. Nano. BioMed. ENG. 2021, 13, 27-35.
174. Pan, H.; Lee, T. W. Recent progress in development of wearable pressure sensors derived from biological materials. Adv. Healthc. Mater. 2021, 10, e2100460.
175. Wei, Y.; Shi, X.; Yao, Z.; et al. Fully paper-integrated hydrophobic and air permeable piezoresistive sensors for high-humidity and underwater wearable motion monitoring. npj. Flex. Electron. 2023, 7, 244.
176. Luo, J.; Liu, F.; Yin, A.; et al. Highly sensitive, wide-pressure and low-frequency characterized pressure sensor based on piezoresistive-piezoelectric coupling effects in porous wood. Carbohydr. Polym. 2023, 315, 120983.
177. Thi Khuat, K.; Doan, H. N.; Vo, P. P.; et al. Lightweight, flexible, and conductive PEDOT:PSS coated polyimide nanofibrous aerogels for piezoresistive pressure sensor application. J. Mater. Chem. C. 2024, 12, 7240-51.
178. Lin, J.; Li, J.; Song, Y.; et al. Carbon nanofibrous aerogels derived from electrospun polyimide for multifunctional piezoresistive sensors. ACS. Appl. Mater. Interfaces. 2024, 16, 16712-23.
179. Lin, J.; Li, J.; Li, W.; et al. Multifunctional polyimide nanofibrous aerogel sensor for motion monitoring and airflow perception. Compos. Part. A. Appl. Sci. Manuf. 2024, 178, 108003.
180. Wang, Z.; Qin, Z.; Zhao, B.; Zhu, H.; Pan, K. Lightweight, superelastic, and temperature-resistant rGO/polysulfoneamide-based nanofiber composite aerogel for wearable piezoresistive sensors. J. Mater. Chem. C. 2023, 11, 14641-51.
181. Liu, X.; Ma, Y.; Dai, X.; Li, S.; Li, B.; Zhang, X. Flexible pressure sensor based on Pt/PI network with high sensitivity and high thermal resistance. Chem. Eng. J. 2024, 494, 152996.
182. Wang, C.; Ma, C.; Wu, X.; Li, M.; Lu, S.; Dai, P. Electrically conductive AgNPs/TPU-electrospun fibers with hierarchical microstructures by a one-step method for a high-performance flexible pressure sensor. ACS. Appl. Electron. Mater. 2023, 5, 6334-44.
183. Tang, J.; Wu, Y.; Ma, S.; Zhang, Y.; Yan, T.; Pan, Z. Three-directional knitted fabric sensor made of elastic carbon-based nanofiber yarn with excellent tensile and pressure sensing performance. Nano. Energy. 2024, 128, 109801.
184. Chang, K.; Guo, M.; Pu, L.; et al. Wearable nanofibrous tactile sensors with fast response and wireless communication. Chem. Eng. J. 2023, 451, 138578.
185. Bi, X.; Duan, Z.; Hou, X.; et al. Perpendicularly assembled oriented electrospinning nanofibers based piezoresistive pressure sensor with wide measurement range. Nano. Res. 2024, 17, 6493-501.
186. Zheng, Z.; Yang, Q.; Song, S.; Pan, Y.; Xue, H.; Li, J. Anti-oxidized self-assembly of multilayered F-Mene/MXene/TPU composite with improved environmental stability and pressure sensing performances. Polymers 2024, 16, 1337.
187. Zhang, H.; Du, C.; Zhang, Y. Constructing the 3D interconnected conductive MXene-cellulose scaffold to boosting the piezoresistive sensing capability. ACS. Appl. Electron. Mater. 2024, 6, 6785-92.
188. Wang, M.; Wang, G.; Zheng, M.; et al. High-performance flexible piezoresistive pressure sensor based on multi-layer interlocking microstructures. J. Mater. Chem. A. 2024, 12, 22931-44.
189. Zhang, X.; Xu, J.; Chen, Z.; Zhu, G.; Wei, A.; Chen, D. A high sensing performance piezoresistive sensor based on TPU/c-MWCNTs/V2CTX-MXene electrospun film for human motion detection. J. Alloys. Compd. 2024, 1007, 176408.
190. Cheng, H.; Yang, C.; Chu, J.; Zhou, H.; Wang, C. Multifunctional Ti3C2Tx MXene/nanospheres/Ti3C2Tx MXene/thermoplastic polyurethane electrospinning membrane inspired by bean pod structure for EMI shielding and pressure sensing. Sens. Actuators. A. Phys. 2023, 353, 114226.
191. Wei, J. A.; Zhang, Z.; Chen, L.; et al. Flexible piezoresistive sensors based on PPy granule-anchored multilayer fibrous membranes with a wide operating range and high sensitivity. ACS. Appl. Mater. Interfaces. 2024, 16, 19421-31.
192. Lei, P.; Bao, Y.; Zhang, W.; et al. Synergy of ZnO nanowire arrays and electrospun membrane gradient wrinkles in piezoresistive materials for wide-sensing range and high-sensitivity flexible pressure sensor. Adv. Fiber. Mater. 2024, 6, 414-29.
193. Li, C.; Gu, H.; Ji, Z.; et al. Hierarchically structured MXene nanosheets on carbon sponges with a synergistic effect of electrostatic adsorption and capillary action for highly sensitive pressure sensors. ACS. Appl. Nano. Mater. 2023, 6, 13482-91.
194. Zhi, C.; Shi, S.; Zhang, S.; et al. Bioinspired all-fibrous directional moisture-wicking electronic skins for biomechanical energy harvesting and all-range health sensing. Nanomicro. Lett. 2023, 15, 60.
195. Choi, S. B.; Noh, T.; Jung, S. B.; Kim, J. W. Stretchable piezoresistive pressure sensor array with sophisticated sensitivity, strain-insensitivity, and reproducibility. Adv. Sci. 2024, 11, e2405374.
196. Chang, K.; Dong, J.; Mao, Y.; et al. Presenting the shape of sound through a dual-mode strain/tactile sensor. J. Mater. Chem. A. 2023, 11, 18179-87.
197. Wang, X.; Kang, S.; Dai, Z.; et al. Flexible electrospinning pressure sensing film with wide pressure detection range and high sensitivity. J. Text. Inst. 2025, 116, 71-9.
198. Nan, X.; Xie, J.; Gao, Y.; Zhang, X.; Lou, X.; Wang, F. Dual‐active‐layer flexible piezoresistive sensor based on wrinkled microstructures and electrospun fiber network for human‐related motion sensing applications. J. Appl. Polym. Sci. 2025, 142, e56340.
199. Sun, J.; Zhang, D.; Zhang, R.; et al. Novel polyurethane based, fully flexible, high-performance piezoresistive sensor for real-time pressure monitoring. ACS. Appl. Mater. Interfaces. 2024, 16, 25422-31.
200. Li, X.; Song, X.; Zhang, L.; et al. Biocompatible polylactic acid/wool keratin/carbon nanotubes fibers via electrospinning as a flexible pressure electronic sensor. ACS. Appl. Electron. Mater. 2024, 6, 6131-9.
201. Zhou, J.; Zhang, L.; Ji, Z.; Xu, R.; Jiang, Y. Piezoresistive pressure sensor based on conductive MWCNTs@PANI fiber network for motion sensing and human–machine interface. J. Appl. Polym. Sci. 2024, 141, e55591.
202. Zhu, Q.; Li, P.; Gao, J.; et al. A facile fabrication strategy constructed multilayer piezoresistive pressure sensor for intelligent recognition system towards privacy protection. Chem. Eng. J. 2024, 486, 150201.
203. Wu, Y.; Dong, S.; Li, X.; et al. A stretchable all-nanofiber iontronic pressure sensor. Soft. Sci. 2023, 3, 33.
204. Pan, S.; He, J.; Wang, W.; et al. Piezoresistive MXene@CNTs nanofiber membrane sensors with micro-hemispherical structures via template-assisted electrospinning for human health monitoring. Ind. Eng. Chem. Res. 2025, 64, 3587-601.
205. Ren, M.; Sun, Z.; Zhang, M.; et al. A high-performance wearable pressure sensor based on an MXene/PVP composite nanofiber membrane for health monitoring. Nanoscale. Adv. 2022, 4, 3987-95.
206. Guo, D.; Dong, S.; Wang, Q.; et al. Enhanced sensitivity and detection range of a flexible pressure sensor utilizing a nano-cracked PVP hierarchical nanofiber membrane formed by BiI3 sublimation. Chem. Eng. J. 2023, 476, 146464.
207. Yang, R.; Wu, Y.; Liu, M.; Zheng, H. Ultrathin GPU/CNTs@Ag electrospun fibers for use as strain/piezoresistive flexible wearable sensors. IEEE. Sens. J. 2025, 25, 17072-84.
208. Lu, H.; Zhu, H.; Xu, J.; Lai, X.; Zeng, X.; Li, H. Biobased, degradable and directional porous carboxymethyl chitosan/lignosulfonate sodium aerogel-based piezoresistive pressure sensor with dual-conductive network for human motion detection. Chem. Eng. J. 2024, 497, 154868.
209. Su, W.; Zong, S.; Lv, K.; et al. Biomimetic scale-like polysaccharide-based highly-sensitive piezoresistive sensor with “shell-core” nanostructure. Chem. Eng. J. 2023, 476, 146572.
210. Gong, H.; Chao, H.; Ni, L.; et al. AgOCN piezoresistive sensor for human motion signal detection based on electrospinning method. ACS. Omega. 2025, 10, 23836-47.
211. Zhang, D.; Wang, Y.; Sun, S.; et al. Ceramic hybrid nanofiber-based elastic scaffold pressure sensor with good sensitivity, breathability, and washability. Ceram. Int. 2024, 50, 3453-60.
212. Yang, T.; Ma, C.; Lin, C.; et al. Innovative fabrication of ultrasensitive and durable graphene fiber aerogel for flexible pressure sensors. Carbon 2024, 229, 119484.
213. Duan, W.; Feng, J.; Lin, W.; et al. High-sensitivity and wide linear range all-fabric piezoresistive pressure sensor for feet motion monitoring. IEEE. Sens. J. 2025, 25, 18909-17.
214. Umapathi, R.; Pammi, S.; Han, S.; et al. Designing smart anti-theft alarm system via lead-free BSFO-PDMS composite based triboelectric nanogenerator. Chem. Eng. J. 2025, 511, 161799.
215. Umapathi, R.; Rethinasabapathy, M.; Kakani, V.; et al. Hexagonal boron nitride composite film based triboelectric nanogenerator for energy harvesting and machine learning assisted handwriting recognition. Nano. Energy. 2025, 136, 110689.
216. Rani, G. M.; Wu, C.; Motora, K. G.; Umapathi, R.; Jose, C. R. M. Acoustic-electric conversion and triboelectric properties of nature-driven CF-CNT based triboelectric nanogenerator for mechanical and sound energy harvesting. Nano. Energy. 2023, 108, 108211.
217. Rani, G. M.; Wu, C.; Motora, K. G.; Umapathi, R. Waste-to-energy: utilization of recycled waste materials to fabricate triboelectric nanogenerator for mechanical energy harvesting. J. Clean. Prod. 2022, 363, 132532.
218. Kaifosh, P.; Reardon, T. R.; CTRL-labs at Reality Labs. A generic non-invasive neuromotor interface for human-computer interaction. Nature 2025, 645, 702-11.
219. Zhang, M.; Hao, M.; Liu, B.; et al. Recent progress of hydrogels in brain-machine interface. Soft. Sci. 2024, 4, 39.
220. Lin, W.; Xu, Y.; Yu, S.; et al. Highly programmable haptic decoding and self‐adaptive spatiotemporal feedback toward embodied intelligence. Adv. Funct. Mater. 2025, 35, 2500633.







