REFERENCES

1. Rogers, J. A.; Someya, T.; Huang, Y. Materials and mechanics for stretchable electronics. Science 2010, 327, 1603-7.

2. Kim, D. H.; Ghaffari, R.; Lu, N.; Rogers, J. A. Flexible and stretchable electronics for biointegrated devices. Annu. Rev. Biomed. Eng. 2012, 14, 113-28.

3. Yang, C. C.; Hsu, Y. L. A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors 2010, 10, 7772-88.

4. Zhang, Z.; Zhu, Z.; Zhou, P.; et al. Soft bioelectronics for therapeutics. ACS. Nano. 2023, 17, 17634-67.

5. Wanner, D.; Hashim, H. A.; Srivastava, S.; Steinhauer, A. UAV avionics safety, certification, accidents, redundancy, integrity, and reliability: a comprehensive review and future trends. Drone. Syst. Appl. 2024, 12, 1-23.

6. Zhang, J.; Wang, J.; Zhong, C.; Zhang, Y.; Qiu, Y.; Qin, L. Flexible electronics: advancements and applications of flexible piezoelectric composites in modern sensing technologies. Micromachines 2024, 15, 982.

7. Dahiya, R. The stronger venue for flexible electronics. npj. Flex. Electron. 2023, 7, 283.

8. Zhao, Z.; Tan, Z.; Liu, Z.; Efe, M. O.; Ahn, C. K. Adaptive inverse compensation fault-tolerant control for a flexible manipulator with unknown dead-zone and actuator faults. IEEE. Trans. Ind. Electron. 2023, 70, 12698-707.

9. Baruah, R. K.; Yoo, H.; Lee, E. K. Interconnection technologies for flexible electronics: materials, fabrications, and applications. Micromachines 2023, 14, 1131.

10. Wu, F.; Meng, X.; Liu, Z.; et al. Ta4C3 Nanosheet/melamine sponges with high sensitivity and long-term stability for wearable piezoresistive sensors. ACS. Appl. Nano. Mater. 2024, 7, 695-704.

11. Wu, F.; Yu, L.; Zhou, L.; et al. Conductive hydrogel with Ta4C3TX MXene to detect human movement. ACS. Appl. Nano. Mater. 2024, 7, 27668-80.

12. Rafanelli, A.; Hillman, D.; Johnson, C.; Coyle, R.; Pearson, T. Pb-free solders and aerospace/defense (A&D) high performance considerations. J. Surf. Mount. Technol. 2023, 36, 8-31.

13. Ji, D.; Jiang, L.; Cai, X.; et al. Large scale, flexible organic transistor arrays and circuits based on polyimide materials. Org. Electron. 2013, 14, 2528-33.

14. Wang, Y.; Zhou, X.; Feng, X.; et al. Polyimide films containing trifluoromethoxy groups with high comprehensive performance for flexible circuitry substrates. ACS. Appl. Polym. Mater. 2022, 4, 5831-9.

15. Ma, J.; Liu, X.; Wang, R.; Lu, C.; Wen, X.; Tu, G. Research progress and application of polyimide-based nanocomposites. Nanomaterials 2023, 13, 656.

16. Barlow, F.; Lostetter, A.; Elshabini, A. Low cost flex substrates for miniaturized electronic assemblies. Microelectron. Reliab. 2002, 42, 1091-9.

17. Gilleo, K.; Boyes, B.; Corbett, S.; Larson, G.; Price, D. High volume, low cost flip chip assembly on polyester flex. Circuit. World. 1999, 25, 11-7.

18. Li, J.; Wong, W. Y.; Tao, X. M. Recent advances in soft functional materials: preparation, functions and applications. Nanoscale 2020, 12, 1281-306.

19. Zhou, L.; Liu, S.; Miao, X.; et al. Advancements and applications of liquid crystal/polymer composite films. ACS. Mater. Lett. 2023, 5, 2760-75.

20. Ma, J.; Choi, J.; Park, S.; et al. Liquid crystals for advanced smart devices with microwave and millimeter-wave applications: recent progress for next-generation communications (Adv. Mater. 45/2023). Adv. Mater. 2023, 35, 2370327.

21. Kim, J.; Kim, B. Y.; Park, S. D.; et al. Mechanical durability of flexible printed circuit boards containing thin coverlays fabricated with poly(amide-imide-urethane)/epoxy interpenetrating networks. Micromachines 2021, 12, 943.

22. Reese, C. J.; Musgrave, G. M.; Wong, J.; et al. Photopatternable, degradable, and performant polyimide network substrates for e-waste mitigation. RSC. Appl. Polym. 2024, 2, 805-15.

23. Bian, L.; Huo, Y.; Meng, D. Thermal residual stress and interface binding effects on fiber reinforced composites. Arch. Appl. Mech. 2021, 91, 3315-26.

24. Tang, W.; Liu, Y.; Jing, X.; Hou, J.; Zhang, Q.; Jian, C. Progress of research on the bonding-strength improvement of two-layer adhesive-free flexible copper-clad laminates. RSC. Adv. 2024, 14, 12372-85.

25. Yang, D.; Wang, J.; Cao, Y.; et al. Polyaniline-based biological and chemical sensors: sensing mechanism, configuration design, and perspective. ACS. Appl. Electron. Mater. 2023, 5, 593-611.

26. Yang, L.; Huang, X.; Wu, H.; et al. Silver nanowires: from synthesis, growth mechanism, device fabrications to prospective engineered applications. Eng. Sci. 2023, 23, 808.

27. Oh, H.; Jeong, S.; Yun, Y.; Jeong, S. Y. Development of transmission line employing graphene-silver nanowire/PET structure for application in flexible and wearable devices in X-band wireless communication systems. J. Electromagn. Eng. Sci. 2024, 24, 1-8.

28. Chen, H.; Zhuo, F.; Zhou, J.; et al. Advances in graphene-based flexible and wearable strain sensors. Chem. Eng. J. 2023, 464, 142576.

29. Li, J.; Li, M.; Chen, Z.; et al. Large area roll-to-roll printed semiconducting carbon nanotube thin films for flexible carbon-based electronics. Nanoscale 2023, 15, 5317-26.

30. Chen, X.; Wang, Y.; Zhang, S.; et al. 3D printing of graphene oxide/carbon nanotubes hydrogel circuits for multifunctional fire alarm and protection. Polym. Test. 2023, 119, 107905.

31. Ko, Y.; Kwon, G.; Choi, H.; et al. Cutting edge use of conductive patterns in nanocellulose-based green electronics. Adv. Funct. Mater. 2023, 33, 2302785.

32. Zhang, W.; Yao, Z.; Liu, H.; et al. Electrical and mechanical reliability and failure mechanism analysis of electrically conductive adhesives. Microelectron. Reliab. 2023, 151, 115236.

33. Zhang, Y.; Yu, W.; Zhang, L.; Yin, J.; Wang, J.; Xie, H. Thermal conductivity and mechanical properties of low-density silicone rubber filled with Al2O3 and graphene nanoplatelets. J. Therm. Sci. Eng. Appl. 2018, 10, 011014.

34. Jiang, J.; Yang, S.; Li, L.; Bai, S. High thermal conductivity polylactic acid composite for 3D printing: synergistic effect of graphene and alumina. Polym. Adv. Technol. 2020, 31, 1291-9.

35. Dermanaki Farahani, R.; Gagne, M.; Klemberg-Sapieha, J. E.; Therriault, D. Electrically conductive silver nanoparticles-filled nanocomposite materials as surface coatings of composite structures. Adv. Eng. Mater. 2016, 18, 1189-99.

36. Lins, F.; Kahl, C.; Zarges, J. C.; Heim, H. P. Modification of polyamide 66 for a media-tight hybrid composite with aluminum. Polymers 2023, 15, 1800.

37. Li, Q.; Ran, Z.; Ding, X.; Wang, X. Fabric circuit board connecting to flexible sensors or rigid components for wearable applications. Sensors 2019, 19, 3745.

38. Ying, W. B.; Wang, G.; Kong, Z.; et al. A biologically muscle-inspired polyurethane with super-tough, thermal reparable and self-healing capabilities for stretchable electronics. Adv. Funct. Mater. 2021, 31, 2009869.

39. Balan, A. E.; Al-Sharea, A.; Lavasani, E. J.; et al. Paraffin-multilayer graphene composite for thermal management in electronics. Materials 2023, 16, 2310.

40. Bell, C.; Corney, J.; Zuelli, N.; Savings, D. A state of the art review of hydroforming technology: its applications, research areas, history, and future in manufacturing. Int. J. Mater. Form. 2020, 13, 789-828.

41. Yuan, J.; Lyu, B.; Hang, W.; Deng, Q. Review on the progress of ultra-precision machining technologies. Front. Mech. Eng. 2017, 12, 158-80.

42. Zhang, X.; Wang, C. Y.; Zheng, L. J.; Wang, L. F.; Song, Y. X. Experimental study on cutting force of high-speed micro-drilling flexible printed circuit board. Mater. Sci. Forum. 2012, 723, 401-6.

43. Nisser, M.; Liao, C. C.; Chai, Y.; Adhikari, A.; Hodges, S.; Mueller, S. LaserFactory: a laser cutter-based electromechanical assembly and fabrication platform to make functional devices & robots. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. Association for Computing Machinery; 2021. p. 1-15.

44. Kim, T.; Kim, J. Laser cutting of flexible printed circuit board in liquid. J. Korean. Soc. Manuf. Technol. Eng. 2013, 22, 56-62.

45. Wu, C.; Xu, J.; Zhang, T.; et al. Precision cutting of PDMS film with UV-nanosecond laser based on heat generation-diffusion regulation. Opt. Laser. Technol. 2022, 145, 107462.

46. Ke-Wang, S. P.; Ma, W. P.; Tzeng, S. C.; Chang, K. C. Quality management and reliability of flexible printed circuit (fpc) after blanking. 2006. https://www.researchgate.net/publication/289073677_Quality_management_and_reliability_of_flexible_printed_circuit_fpc_after_blanking. (accessed 2025-11-03).

47. Zhang, D.; Zhang, X.; Nie, G.; Yang, Z.; Ding, H. Characterization of material strain and thermal softening effects in the cutting process. Int. J. Mach. Tools. Manuf. 2021, 160, 103672.

48. Zheng, L.; Wang, C.; Zhang, X.; et al. The tool-wear characteristics of flexible printed circuit board micro-drilling and its influence on micro-hole quality. Circuit. World. 2016, 42, 162-9.

49. Duan, X.; Yang, Z.; Chen, L.; et al. Review on the properties of hexagonal boron nitride matrix composite ceramics. J. Eur. Ceram. Soc. 2016, 36, 3725-37.

50. Xu, W.; He, Y.; Li, J.; et al. Robotization and intelligent digital systems in the meat cutting industry: from the perspectives of robotic cutting, perception, and digital development. Trends. Food. Sci. Technol. 2023, 135, 234-51.

51. Mulko, L.; Soldera, M.; Lasagni, A. F. Structuring and functionalization of non-metallic materials using direct laser interference patterning: a review. Nanophotonics 2022, 11, 203-40.

52. Ali, B.; Litvinyuk, I. V.; Rybachuk, M. Femtosecond laser micromachining of diamond: current research status, applications and challenges. Carbon 2021, 179, 209-26.

53. Sharma, A.; Yadava, V. Experimental analysis of Nd-YAG laser cutting of sheet materials - a review. Opt. Laser. Technol. 2018, 98, 264-80.

54. Wu, C.; Rong, Y.; Huang, Y.; Li, M.; Zhang, G.; Liu, W. Precision cutting of polyvinyl chloride film by ultraviolet nanosecond laser. Mater. Manuf. Process. 2021, 36, 1650-7.

55. Mishra, S.; Yadava, V. Laser beam micromachining (LBMM) - a review. Opt. Lasers. Eng. 2015, 73, 89-122.

56. Huske, M. Burr and stress-free cutting of flexible printed circuits. 2006. https://api.semanticscholar.org/CorpusID:143429311. (accessed 2025-11-03).

57. Tang, Y.; Li, H.; Sheng, J.; et al. Study on wet chemical etching of flexible printed circuit board with 16-μm line pitch. J. Electron. Mater. 2023, 52, 4030-6.

58. Srivastava, R. P.; Khang, D. Y. Structuring of Si into multiple scales by metal-assisted chemical etching. Adv. Mater. 2021, 33, e2005932.

59. Zhang, H.; Liu, Y.; Yang, C.; Xiang, L.; Hu, Y.; Peng, L. M. Wafer-scale fabrication of ultrathin flexible electronic systems via capillary-assisted electrochemical delamination. Adv. Mater. 2018, 30, e1805408.

60. Wang, C.; Liu, W.; Tao, X.; et al. Maskless metal patterning by meniscus-confined electrochemical etching and its application in organic field-effect transistors. Org. Electron. 2021, 96, 106221.

61. Ji, S. Y.; Ajmal, C. M.; Kim, T.; Chang, W. S.; Baik, S. Laser patterning of highly conductive flexible circuits. Nanotechnology 2017, 28, 165301.

62. Li, Q.; Wang, Q.; Li, L.; et al. Femtosecond laser-etched MXene microsupercapacitors with double-side configuration via arbitrary on- and through-substrate connections. Adv. Energy. Mater. 2020, 10, 2000470.

63. Dahiya, R. S.; Gennaro, S. Bendable ultra-thin chips on flexible foils. IEEE. Sens. J. 2013, 13, 4030-7.

64. Sheng, J.; Li, H.; Shen, S.; et al. Investigation on chemical etching process of FPCB with 18 μm line pitch. IEEE. Access. 2021, 9, 50872-9.

65. Lindeberg, M.; Hjort, K. Interconnected nanowire clusters in polyimide for flexible circuits and magnetic sensing applications. Sens. Actuators. A. Phys. 2003, 105, 150-61.

66. Ouyang, G.; Fukushima, T.; Ren, H.; Iyer, S. S. 3D flexible fan-out wafer-level packaging for wearable devices. In 2023 IEEE 73rd Electronic Components and Technology Conference (ECTC), Orlando, USA. May 30 - June 02, 2023. IEEE; 2023. pp. 601-5.

67. Lee, H. Material removal characteristics of abrasive-free Cu chemical-mechanical polishing (CMP) using electrolytic ionization via Ni electrodes. Micromachines 2023, 14, 272.

68. Kaneko, S.; Asaoka, N.; Tosaka, H.; Ohta, R.; Yanagisawa, K. Monolithic fabrication of flexible film and thinned integrated circuits. In Proceedings IEEE The Tenth Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots, Nagoya, Japan. January 26-30, 1997. IEEE; 1997. pp. 471-6.

69. Tsuji, A.; Kobayashi, T.; Murata, J. Soft copper nanoimprinting via solid-state electrochemical etching for flexible optoelectronics. ACS. Appl. Mater. Interfaces. 2025, 17, 21929-39.

70. Pa, P. Environmentally friendly electrochemical recycling of indium from scrap ITO glass and PET. Int. J. Adv. Manuf. Technol. 2017, 89, 1295-306.

71. Jeerapan, I.; Poorahong, S. Review - Flexible and stretchable electrochemical sensing systems: materials, energy sources, and integrations. J. Electrochem. Soc. 2020, 167, 037573.

72. Zacharatos, F.; Makrygianni, M.; Geremia, R.; et al. Laser direct write micro-fabrication of large area electronics on flexible substrates. Appl. Surf. Sci. 2016, 374, 117-23.

73. Seppala, J. E.; Hoon Han, S.; Hillgartner, K. E.; Davis, C. S.; Migler, K. B. Weld formation during material extrusion additive manufacturing. Soft. Matter. 2017, 13, 6761-9.

74. Wang, X.; Yu, H.; Li, P.; et al. Femtosecond laser-based processing methods and their applications in optical device manufacturing: a review. Opt. Laser. Technol. 2021, 135, 106687.

75. Liu, H.; Lin, W.; Hong, M. Hybrid laser precision engineering of transparent hard materials: challenges, solutions and applications. Light. Sci. Appl. 2021, 10, 162.

76. Büttner, H.; Michael, K.; Gysel, J.; et al. Innovative micro-tool manufacturing using ultra-short pulse laser ablation. J. Mater. Process. Technol. 2020, 285, 116766.

77. Qin, R.; Hu, M.; Zhang, N.; et al. Flexible fabrication of flexible electronics: a general laser ablation strategy for robust large-area copper-based electronics. Adv. Electron. Mater. 2019, 5, 1900365.

78. Liang, S.; Chen, X.; Li, F.; Song, N. Laser-engraved liquid metal circuit for wearable electronics. Bioengineering 2022, 9, 59.

79. Pease, R.; Chou, S. Lithography and other patterning techniques for future electronics. Proc. IEEE. 2008, 96, 248-70.

80. Yang, Y.; Jeon, Y.; Dong, Z.; et al. Nanofabrication for nanophotonics. ACS. Nano. 2025, 19, 12491-605.

81. Xia, Y.; Whitesides, G. M. Soft lithography. Angew. Chem. Int. Ed. Engl. 1998, 37, 550-75.

82. Yeh, W. M.; Lawson, R. A.; Tolbert, L. M.; Henderson, C. L. A study of reactive adhesion promoters and their ability to mitigate pattern collapse in thin film lithography. In SPIE Advanced Lithography, San Jose, USA. 2011. pp. 534-40.

83. Wong, W. S.; Lujan, R.; Daniel, J. H.; Limb, S. Digital lithography for large-area electronics on flexible substrates. J. Non. Cryst. Solids. 2006, 352, 1981-5.

84. Tang, N.; Zhou, C.; Xu, L.; Jiang, Y.; Qu, H.; Duan, X. A fully integrated wireless flexible ammonia sensor fabricated by soft nano-lithography. ACS. Sens. 2019, 4, 726-32.

85. Dadras-Toussi, O.; Khorrami, M.; Louis Sam Titus, A. S. C.; Majd, S.; Mohan, C.; Abidian, M. R. Multiphoton lithography of organic semiconductor devices for 3D printing of flexible electronic circuits, biosensors, and bioelectronics. Adv. Mater. 2022, 34, e2200512.

86. Zschieschang, U.; Klauk, H.; Borchert, J. W. High-resolution lithography for high-frequency organic thin-film transistors. Adv. Mater. Technol. 2023, 8, 2201888.

87. Bathaei, M. J.; Singh, R.; Mirzajani, H.; et al. Photolithography-based microfabrication of biodegradable flexible and stretchable sensors. Adv. Mater. 2023, 35, e2207081.

88. Augustyn, P.; Rytlewski, P.; Moraczewski, K.; Mazurkiewicz, A. A review on the direct electroplating of polymeric materials. J. Mater. Sci. 2021, 56, 14881-99.

89. Yu, J.; Li, J.; Zhao, Y.; et al. Copper metallization of electrodes for silicon heterojunction solar cells: process, reliability and challenges. Sol. Energy. Mater. Sol. Cells. 2021, 224, 110993.

90. Wu, Y. C.; Huang, Y. J.; Chen, M. K.; Lin, Y. L.; Fu, S. L. Failure analysis of Cu electroplating process with polyimide substrate fabricated for flexible packaging. In 2012 7th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), Taipei. October 24-26, 2012. IEEE; 2012. pp. 94-7.

91. Liu, J.; Yang, C.; Zou, P.; et al. Flexible copper wires through galvanic replacement of zinc paste: a highly cost-effective technology for wiring flexible printed circuits. J. Mater. Chem. C. 2015, 3, 8329-35.

92. Rho, H.; Park, M.; Lee, S.; et al. A graphene superficial layer for the advanced electroforming process. Nanoscale 2016, 8, 12710-4.

93. Chung, S.; Kim, P. K.; Ha, T. Fabrication of hybrid fine metal mask through micro/nano-photolithography and electroforming. Microelectron. Eng. 2021, 247, 111598.

94. Lee, C.; Lim, J.; Hwang, S.; et al. Characterization of flexible copper laminates fabricated by Cu electro-plating process. Trans. Nonferrous. Met. Soc. China. 2009, 19, 965-9.

95. Kosarev, A. A.; Kalinkina, A. A.; Kruglikov, S. S.; Vagramyan, T. A.; Kasatkin, V. E. Effect of the macro- and microthrowing power of the electrolyte on the uniformity of distribution of electroplated copper in through-holes for PCB. J. Solid. State. Electrochem. 2021, 25, 1491-501.

96. Ahn, J. Y.; Ryu, H.; Kim, Y.; et al. Effect of interfacial layer incorporation in electroplated copper–graphene composites on thermal conductivity. J. Alloys. Compd. 2025, 1021, 179762.

97. Ren, S.; Xia, X.; Song, K.; et al. Effect of adding copper-plated graphite on the organization and wear reduction of copper-nickel alloy composite coatings. Surf. Coat. Technol. 2025, 496, 131661.

98. Li, Y.; Sun, Q.; Li, X. Real-time in situ monitoring of internal stress of the electroplating processes using FBG sensors. Appl. Phys. A. 2019, 125, 3109.

99. Singh, B. P.; Jena, B. K.; Bhattacharjee, S.; Besra, L. Development of oxidation and corrosion resistance hydrophobic graphene oxide-polymer composite coating on copper. Surf. Coat. Technol. 2013, 232, 475-81.

100. Gabardo, C. M.; Soleymani, L. Deposition, patterning, and utility of conductive materials for the rapid prototyping of chemical and bioanalytical devices. Analyst 2016, 141, 3511-25.

101. Lee, M. B.; Ju, S. H.; Ahn, J. W. High-pixel-density fine metal mask fabricated by electroforming of Fe-Ni alloy onto UV-nanoimprinted resin pattern on Si substrate. Trans. Electr. Electron. Mater. 2023, 24, 373-80.

102. Laine-Ma, T.; Ruuskanen, P.; Pasanen, S.; Karttunen, M. Electroformed conductor patterns in electronics manufacturing. Circuit. World. 2014, 40, 150-9.

103. Zhang, H.; Zhang, N.; Gilchrist, M.; Fang, F. Advances in precision micro/nano-electroforming: a state-of-the-art review. J. Micromech. Microeng. 2020, 30, 103002.

104. Srivastava, V.; Dubey, S.; Vaish, R.; Rajpurohit, B. S. Optimized fabrication of flexible paper-based PCBs with pencil and copper electroplating. Adv. Mater. Technol. 2025, 10, 2400688.

105. Hong, S.; Oh, S.; Kim, E.; et al. Fabrication of screen-printed electrodes with long-term stability for voltammetric and potentiometric applications. Sens. Actuators. Rep. 2024, 8, 100234.

106. Rong, Y.; Ming, Y.; Ji, W.; et al. Toward industrial-scale production of perovskite solar cells: screen printing, slot-die coating, and emerging techniques. J. Phys. Chem. Lett. 2018, 9, 2707-13.

107. Ostfeld, A. E.; Deckman, I.; Gaikwad, A. M.; Lochner, C. M.; Arias, A. C. Screen printed passive components for flexible power electronics. Sci. Rep. 2015, 5, 15959.

108. Maddipatla, D.; Zhang, X.; Bose, A. K.; et al. A polyimide based force sensor fabricated using additive screen-printing process for flexible electronics. IEEE. Access. 2020, 8, 207813-21.

109. Zhou, H.; Qin, W.; Yu, Q.; Cheng, H.; Yu, X.; Wu, H. Transfer printing and its applications in flexible electronic devices. Nanomaterials 2019, 9, 283.

110. Lv, S.; Ye, S.; Chen, C.; et al. Reactive inkjet printing of graphene based flexible circuits and radio frequency antennas. J. Mater. Chem. C. 2021, 9, 13182-92.

111. Brunetti, I.; Pimpolari, L.; Conti, S.; et al. Inkjet-printed low-dimensional materials-based complementary electronic circuits on paper. npj. 2D. Mater. Appl. 2021, 5, 266.

112. Kim, K. S.; Lee, Y. C.; Ahn, J. H.; Jung, S. B. Evaluation of the flexibility of silver circuits screen-printed on polyimide with an environmental reliability test. J. Nanosci. Nanotechnol. 2011, 11, 5806-11.

113. Cao, X.; Chen, H.; Gu, X.; et al. Screen printing as a scalable and low-cost approach for rigid and flexible thin-film transistors using separated carbon nanotubes. ACS. Nano. 2014, 8, 12769-76.

114. Liu, L.; Shen, Z.; Zhang, X.; Ma, H. Highly conductive graphene/carbon black screen printing inks for flexible electronics. J. Colloid. Interface. Sci. 2021, 582, 12-21.

115. Brooke, R.; Wijeratne, K.; Hübscher, K.; Belaineh, D.; Andersson Ersman, P. Combining vapor phase polymerization and screen printing for printed electronics on flexible substrates. Adv. Mater. Technol. 2022, 7, 2101665.

116. Qin, Y.; Ouyang, X.; Lv, Y.; Liu, W.; Liu, Q.; Wang, S. A review of carbon-based conductive inks and their printing technologies for integrated circuits. Coatings 2023, 13, 1769.

117. Zhou, X.; Peng, Y.; Peng, R.; Zeng, X.; Zhang, Y. A.; Guo, T. Fabrication of large-scale microlens arrays based on screen printing for integral imaging 3D display. ACS. Appl. Mater. Interfaces. 2016, 8, 24248-55.

118. Suresh, R. R.; Lakshmanakumar, M.; Arockia Jayalatha, J. B. B.; et al. Fabrication of screen-printed electrodes: opportunities and challenges. J. Mater. Sci. 2021, 56, 8951-9006.

119. Bandodkar, A. J.; Mohan, V.; López, C. S.; Ramírez, J.; Wang, J. Self-healing inks for autonomous repair of printable electrochemical devices. Adv. Elect. Mater. 2015, 1, 1500289.

120. Gu, M.; Xiao, H.; Wei, S.; Chen, Z.; Cao, L. A portable and sensitive dopamine sensor based on AuNPs functionalized ZnO-rGO nanocomposites modified screen-printed electrode. J. Electroanal. Chem. 2022, 908, 116117.

121. Zargar, R. A.; Arora, M.; Alshahrani, T.; Shkir, M. Screen printed novel ZnO/MWCNTs nanocomposite thick films. Ceram. Int. 2021, 47, 6084-93.

122. Guo, R.; Li, T.; Wu, Z.; et al. Thermal transfer-enabled rapid printing of liquid metal circuits on multiple substrates. ACS. Appl. Mater. Interfaces. 2022, 14, 37028-38.

123. Ding, C.; Wang, J.; Yuan, W.; et al. Durability study of thermal transfer printed textile electrodes for wearable electronic applications. ACS. Appl. Mater. Interfaces. 2022, 14, 29144-55.

124. Descent, P.; Izquierdo, R. Thermal transfer printing with donor ribbon for flexible hybrid RFID antenna fabrication. In 2018 International Flexible Electronics Technology Conference (IFETC), Ottawa, Canada. August 07-09, 2018. IEEE; 2018. p. 1-2.

125. Purushothama, J. M.; Lopez-Soriano, S.; Vena, A.; Sorli, B.; Susanti, I.; Perret, E. Electronically rewritable chipless RFID tags fabricated through thermal transfer printing on flexible PET substrates. IEEE. Trans. Antennas. Propag. 2021, 69, 1908-21.

126. Abdolmaleki, H.; Kidmose, P.; Agarwala, S. Droplet-based techniques for printing of functional inks for flexible physical sensors. Adv. Mater. 2021, 33, e2006792.

127. Hong, J.; Murphy, A. B.; Ashford, B.; Cullen, P. J.; Belmonte, T.; Ostrikov, K. Plasma-digital nexus: plasma nanotechnology for the digital manufacturing age. Rev. Mod. Plasma. Phys. 2020, 4, 39.

128. Allison, J. T.; Cardin, M.; Mccomb, C.; et al. Special Issue: Artificial intelligence and engineering design. J. Mech. Des. 2022, 144, 020301.

129. Liu, Z.; Huang, J.; Li, P.; et al. High-precision inkjet 3D printing of curved multi-material structures: morphology evolution and optimization. Addit. Manuf. 2024, 94, 104497.

130. Huang, L.; Huang, Y.; Liang, J.; Wan, X.; Chen, Y. Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors. Nano. Res. 2011, 4, 675-84.

131. Jeranče, N.; Vasiljević, D.; Samardžić, N.; Stojanović, G. A compact inductive position sensor made by inkjet printing technology on a flexible substrate. Sensors 2012, 12, 1288-98.

132. Sajedi-Moghaddam, A.; Rahmanian, E.; Naseri, N. Inkjet-printing technology for supercapacitor application: current state and perspectives. ACS. Appl. Mater. Interfaces. 2020, 12, 34487-504.

133. Jia, L. C.; Jia, X. X.; Sun, W. J.; et al. Stretchable liquid metal-based conductive textile for electromagnetic interference shielding. ACS. Appl. Mater. Interfaces. 2020, 12, 53230-8.

134. Subbiah, T.; Bhat, G. S.; Tock, R. W.; Parameswaran, S.; Ramkumar, S. S. Electrospinning of nanofibers. J. Appl. Polym. Sci. 2005, 96, 557-69.

135. Cho, Y.; Beak, J. W.; Sagong, M.; Ahn, S.; Nam, J. S.; Kim, I. D. Electrospinning and nanofiber technology: fundamentals, innovations, and applications. Adv. Mater. 2025, 37, e2500162.

136. Ji, D.; Lin, Y.; Guo, X.; et al. Electrospinning of nanofibres. Nat. Rev. Methods. Primers. 2024, 4, 1.

137. He, Z.; Rault, F.; Lewandowski, M.; Mohsenzadeh, E.; Salaün, F. Electrospun PVDF nanofibers for piezoelectric applications: a review of the influence of electrospinning parameters on the β phase and crystallinity enhancement. Polymers 2021, 13, 174.

138. Wang, H.; Zhang, Y.; Niu, H.; et al. An electrospinning–electrospraying technique for connecting electrospun fibers to enhance the thermal conductivity of boron nitride/polymer composite films. Compos. Part. B. Eng. 2022, 230, 109505.

139. Cherpinski, A.; Torres-Giner, S.; Vartiainen, J.; Peresin, M. S.; Lahtinen, P.; Lagaron, J. M. Improving the water resistance of nanocellulose-based films with polyhydroxyalkanoates processed by the electrospinning coating technique. Cellulose 2018, 25, 1291-307.

140. Wang, M.; Ma, C.; Uzabakiriho, P. C.; et al. Stencil printing of liquid metal upon electrospun nanofibers enables high-performance flexible electronics. ACS. Nano. 2021, 15, 19364-76.

141. Ilango, P. R.; Savariraj, A. D.; Huang, H.; et al. Electrospun flexible nanofibres for batteries: design and application. Electrochem. Energy. Rev. 2023, 6, 148.

142. Xie, Y.; Cheng, Y.; Lyu, Y.; Li, R.; Han, J. Printable, flexible ceramic fiber paper based on electrospinning. Rare. Met. 2024, 43, 2739-46.

143. Wang, S.; Fan, P.; Liu, W.; et al. Research progress of flexible electronic devices based on electrospun nanofibers. ACS. Nano. 2024, 18, 31737-72.

144. Xiang, J.; Guangming, L.; Zhang, Z.; Chen, T. Electrospun AG80/BN/PI nanofiber films with enhanced thermal conductivity for flexible circuit boards. ACS. Appl. Polym. Mater. 2025, 7, 3622-35.

145. Favrin, F. L.; Zavagna, L.; Sestini, M.; et al. Antifouling properties of electrospun polymeric coatings induced by controlled surface morphology. Energy. Environ. Mater. 2024, 7, e12773.

146. Wu, S.; Ning, J.; Jiang, F.; Shi, J.; Huang, F. Ceramic nanoparticle-decorated melt-electrospun PVDF nanofiber membrane with enhanced performance as a lithium-ion battery separator. ACS. Omega. 2019, 4, 16309-17.

147. Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 2011, 40, 3941-94.

148. Liu, F.; Gillan, L.; Leppäniemi, J.; Alastalo, A. Focused review on print-patterned contact electrodes for metal-oxide thin-film transistors. Adv. Mater. Interfaces. 2023, 10, 2202258.

149. Sneck, A.; Ailas, H.; Gao, F.; Leppäniemi, J. Reverse-offset printing of polymer resist ink for micrometer-level patterning of metal and metal-oxide layers. ACS. Appl. Mater. Interfaces. 2021, 13, 41782-90.

150. Zikulnig, J.; Chang, S.; Bito, J.; et al. Printed electronics technologies for additive manufacturing of hybrid electronic sensor systems. Adv. Sens. Res. 2023, 2, 2200073.

151. Liu, Y.; Wang, Z.; Pan, Y.; et al. The influence mechanism of ink viscosity on ink transfer rates and film defects of the roll-to-roll printed organic photoactive layers. Sci. China. Mater. 2024, 67, 2600-10.

152. Leppäniemi, J.; Sneck, A.; Kusaka, Y.; Fukuda, N.; Alastalo, A. Reverse-offset printing of metal-nitrate-based metal oxide semiconductor ink for flexible TFTs. Adv. Elect. Mater. 2019, 5, 1900272.

153. Shin, S.; Kim, S.; Cho, Y. T. Tunable reverse offset printing with a stretchable blanket for fabricating flexible printed electronics. Adv. Eng. Mater. 2021, 23, 2001537.

154. Kim, J.; Hwang, I.; Kim, M.; Jung, H.; Bae, H.; Lee, Y. Simple, fast, and scalable reverse-offset printing of micropatterned copper nanowire electrodes with sub-10 μm resolution. ACS. Appl. Mater. Interfaces. 2022, 14, 5807-14.

155. Dai, H.; Xia, Y.; Beeby, S.; Torah, R. High-resolution reverse offset printed electroluminescent multipixel arrays for scalable future wearable displays. Adv. Eng. Mater. 2025, 27, 2500582.

156. Eiroma, K.; Sneck, A.; Halonen, O.; Happonen, T.; Sandberg, H.; Leppäniemi, J. Miniaturized micrometer-level copper wiring and electrodes based on reverse-offset printing for flexible circuits. ACS. Appl. Electron. Mater. 2025, 7, 3511-20.

157. Fukuda, K.; Yoshimura, Y.; Okamoto, T.; et al. Reverse-offset printing optimized for scalable organic thin-film transistors with submicrometer channel lengths. Adv. Elect. Mater. 2015, 1, 1500145.

158. Sneck, A.; Mäkelä, T.; Alastalo, A. Reverse-offset for roll-to-roll high-resolution printing. Flex. Print. Electron. 2018, 3, 014001.

159. Bourassa, J.; Ramm, A.; Feng, J. Q.; Renn, M. J. Water vapor-assisted sintering of silver nanoparticle inks for printed electronics. SN. Appl. Sci. 2019, 1, 542.

160. Martins, P.; Pereira, N.; Lima, A. C.; et al. Advances in printing and electronics: from engagement to commitment. Adv. Funct. Mater. 2023, 33, 2213744.

161. Pandya, D. J.; Muthu Pandian, P.; Kumar, I.; et al. Supercapacitors: review of materials and fabrication methods. Mater. Today. Proc. 2023, In Press.

162. Mogan, J.; Sandanamsamy, L.; Halim, N. A.; Harun, W. S. W.; Kadirgama, K.; Ramasamy, D. A review of FDM and graphene-based polymer composite. IOP. Conf. Ser. Mater. Sci. Eng. 2021, 1078, 012032.

163. Feng, X.; Hou, X.; Cui, C.; et al. Mechanical and antibacterial properties of tannic acid-encapsulated carboxymethyl chitosan/polyvinyl alcohol hydrogels. Eng. Regen. 2021, 2, 57-62.

164. Diegel, O.; Singamneni, S.; Huang, B.; Gibson, I. Getting rid of the wires: curved layer fused deposition modeling in conductive polymer additive manufacturing. Key. Eng. Mater. 2011, 467-9, 662-7.

165. Zhang, D.; Chi, B.; Li, B.; et al. Fabrication of highly conductive graphene flexible circuits by 3D printing. Synth. Met. 2016, 217, 79-86.

166. Cao, C.; Andrews, J. B.; Franklin, A. D. Completely printed, flexible, stable, and hysteresis-free carbon nanotube thin-film transistors via aerosol jet printing. Adv. Elect. Mater. 2017, 3, 1700057.

167. Hobbie, H. A.; Doherty, J. L.; Smith, B. N.; Maccarini, P.; Franklin, A. D. Conformal printed electronics on flexible substrates and inflatable catheters using lathe-based aerosol jet printing. Npj. Flex. Electron. 2024, 8, 54.

168. Zhou, W.; List, F. A.; Duty, C. E.; Babu, S. S. Fabrication of conductive paths on a fused deposition modeling substrate using inkjet deposition. Rapid. Prototyp. J. 2016, 22, 77-86.

169. Gupta, A.; Kumar, N.; Sachdeva, A. Flexible wearable devices using extrusion-based 3D printing approach: a review. Mater. Today. Proc. 2024, 113, 79-86.

170. Bappy, M. O.; Song, K.; Zhang, Y. Recent advances in printed devices for next-generation sensing. APL. Electron. Devices. 2025, 1, 021505.

171. Shandra, A.; Li, K.; Spurling, D.; Ronan, O.; Carey, T.; Nicolosi, V. Aerosol jet printed MXene microsupercapacitors for flexible and washable textile energy storage. Adv. Funct. Mater. 2025, e10255.

172. Gupta, A. A.; Bolduc, A.; Cloutier, S. G.; Izquierdo, R. Aerosol jet printing for printed electronics rapid prototyping. In 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, Canada. May 22-25, 2016. IEEE; 2016. pp. 866-9.

173. Makhinia, A.; Hübscher, K.; Beni, V.; Andersson Ersman, P. High performance organic electrochemical transistors and logic circuits manufactured via a combination of screen and aerosol jet printing techniques. Adv. Mater. Technol. 2022, 7, 2200153.

174. Smith, M.; Choi, Y. S.; Boughey, C.; Kar-Narayan, S. Controlling and assessing the quality of aerosol jet printed features for large area and flexible electronics. Flex. Print. Electron. 2017, 2, 015004.

175. Ma, T.; Li, Y.; Cheng, H.; et al. Enhanced aerosol-jet printing using annular acoustic field for high resolution and minimal overspray. Nat. Commun. 2024, 15, 6317.

176. Knuesel, R. J.; Park, S.; Zheng, W.; Jacobs, H. O. Self-assembly and self-tiling: integrating active dies across length scales on flexible substrates. J. Microelectromech. Syst. 2012, 21, 85-99.

177. Li, X.; Chen, L.; Yu, G.; et al. Rapid fabrication of high-resolution flexible electronics via nanoparticle self-assembly and transfer printing. Nano. Lett. 2024, 24, 1332-40.

178. Saeedi, E.; Kim, S.; Parviz, B. A. Building flexible circuits with self-assembly. Circuit. World. 2008, 34, 25-31.

179. Pang, B.; Jiang, G.; Zhou, J.; et al. Molecular-scale design of cellulose-based functional materials for flexible electronic devices. Adv. Elect. Mater. 2021, 7, 2000944.

180. Guo, X.; Wang, X.; Ou, D.; et al. Controlled mechanical assembly of complex 3D mesostructures and strain sensors by tensile buckling. npj. Flex. Electron. 2018, 2, 28.

181. Liu, H.; Liu, D.; Yang, J.; Gao, H.; Wu, Y. Flexible electronics based on organic semiconductors: from patterned assembly to integrated applications. Small 2023, 19, e2206938.

182. Wang, S.; Zhou, Z.; Li, B.; Wang, C.; Liu, Q. Progresses on new generation laser direct writing technique. Mater. Today. Nano. 2021, 16, 100142.

183. Lim, C.; Hong, M.; Lin, Y.; et al. Sub-micron surface patterning by laser irradiation through microlens arrays. J. Mater. Process. Technol. 2007, 192-3, 328-33.

184. Gandla, S.; Naqi, M.; Lee, M.; et al. Highly linear and stable flexible temperature sensors based on laser-induced carbonization of polyimide substrates for personal mobile monitoring. Adv. Mater. Technol. 2020, 5, 2000014.

185. Liao, J.; Guo, W.; Peng, P. Direct laser writing of copper-graphene composites for flexible electronics. Opt. Lasers. Eng. 2021, 142, 106605.

186. Karimi, G.; Lau, I.; Fowler, M.; Pope, M. Parametric study of laser-induced graphene conductive traces and their application as flexible heaters. Int. J. Energy. Res. 2021, 45, 13712-25.

187. Delacroix, S.; Wang, H.; Heil, T.; Strauss, V. Laser-induced carbonization of natural organic precursors for flexible electronics. Adv. Electron. Mater. 2020, 6, 2000463.

188. Le, T. D.; Phan, H.; Kwon, S.; et al. Recent advances in laser-induced graphene: mechanism, fabrication, properties, and applications in flexible electronics. Adv. Funct. Mater. 2022, 32, 2205158.

189. Uc, J. R. J.; Bhat, S.; Sudhakar, Y. N.; Rao, A.; Cyriac, V.; De, S. Laser-induced graphene electrode-based supercapacitors: insight on the influence of aqueous electrolytes on its energy storage potential. J. Mater. Sci. 2025, 60, 10944-64.

190. Sain, S.; Chowdhury, S.; Maity, S.; Maity, G.; Roy, S. S. Sputtered thin film deposited laser induced graphene based novel micro-supercapacitor device for energy storage application. Sci. Rep. 2024, 14, 16289.

191. Wang, S.; Zeng, G.; Sun, Q.; et al. Flexible electronic systems via electrohydrodynamic jet printing: a MnSe@rGO cathode for aqueous zinc-ion batteries. ACS. Nano. 2023, 17, 13256-68.

192. Nakamura, H.; Honda, S.; Matsumura, G.; et al. Flexible electronic brush: real-time multimodal sensing powered by reservoir computing through whisker dynamics. Sci. Adv. 2025, 11, eads4388.

193. Luo, Y.; Abidian, M. R.; Ahn, J. H.; et al. Technology roadmap for flexible sensors. ACS. Nano. 2023, 17, 5211-95.

194. Wang, S.; Tian, Y.; Wang, C.; Hang, C.; Huang, Y.; Liao, C. Chemical and thermal robust tri-layer rGO/Ag NWs/GO composite film for wearable heaters. Compos. Sci. Technol. 2019, 174, 76-83.

195. Ni, H.; Song, Y.; Sun, J. Printed force sensor with printable conductive material and printing technique. Chem. Eng. J. 2025, 515, 163542.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/