REFERENCES

1. Aubin, C. A.; Gorissen, B.; Milana, E.; et al. Towards enduring autonomous robots via embodied energy. Nature 2022, 602, 393-402.

2. Wehner, M.; Truby, R. L.; Fitzgerald, D. J.; et al. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 2016, 536, 451-5.

3. Cianchetti, M.; Laschi, C.; Menciassi, A.; Dario, P. Biomedical applications of soft robotics. Nat. Rev. Mater. 2018, 3, 143-53.

4. Li, G.; Chen, X.; Zhou, F.; et al. Self-powered soft robot in the Mariana Trench. Nature 2021, 591, 66-71.

5. Xie, Z.; Yuan, F.; Liu, J.; et al. Octopus-inspired sensorized soft arm for environmental interaction. Sci. Robot. 2023, 8, eadh7852.

6. Hu, W.; Lum, G. Z.; Mastrangeli, M.; Sitti, M. Small-scale soft-bodied robot with multimodal locomotion. Nature 2018, 554, 81-5.

7. Sitti, M. Miniature soft robots - road to the clinic. Nat. Rev. Mater. 2018, 3, 74-5.

8. Yoon, J. E.; Chung, J.; Park, S.; et al. Evaluation of gait-assistive soft wearable robot designs for wear comfort, focusing on electroencephalogram and satisfaction. IEEE. Robot. Autom. Lett. 2024, 9, 8834-41.

9. Kim, Y.; Parada, G. A.; Liu, S.; Zhao, X. Ferromagnetic soft continuum robots. Sci. Robot. 2019, 4, eaax7329.

10. Piskarev, Y.; Sun, Y.; Righi, M.; et al. Fast-response variable-stiffness magnetic catheters for minimally invasive surgery. Adv. Sci. 2024, 11, e2305537.

11. Davy, J.; Dean, T. P.; Greenidge, N. J.; et al. Magnetic fluid-driven vine robots for minimally invasive tissue biopsy sampling. Adv. Intell. Syst. 2025, 7, 2400827.

12. Proietti, T.; O’Neill, C.; Gerez, L.; et al. Restoring arm function with a soft robotic wearable for individuals with amyotrophic lateral sclerosis. Sci. Transl. Med. 2023, 15, eadd1504.

13. Gu, G.; Zhang, N.; Xu, H.; et al. A soft neuroprosthetic hand providing simultaneous myoelectric control and tactile feedback. Nat. Biomed. Eng. 2023, 7, 589-98.

14. Wearable robot helps man with Parkinson’s disease to walk. Nat. Med. 2024, 30, 47-8.

15. Song, X.; Sun, R.; Wang, R.; et al. Puffball-inspired microrobotic systems with robust payload, strong protection, and targeted locomotion for on-demand drug delivery. Adv. Mater. 2022, 34, e2204791.

16. Li, Y.; Dong, D.; Qu, Y.; et al. A multidrug delivery microrobot for the synergistic treatment of cancer. Small 2023, 19, e2301889.

17. Pang, Y.; Xu, X.; Chen, S.; et al. Skin-inspired textile-based tactile sensors enable multifunctional sensing of wearables and soft robots. Nano. Energy. 2022, 96, 107137.

18. Ashok, A.; Nguyen, T. K.; Barton, M.; et al. Flexible nanoarchitectonics for biosensing and physiological monitoring applications. Small 2023, 19, e2204946.

19. Lee, S. H.; Kim, Y. S.; Yeo, M. K.; et al. Fully portable continuous real-time auscultation with a soft wearable stethoscope designed for automated disease diagnosis. Sci. Adv. 2022, 8, eabo5867.

20. Zhou, W.; Xiong, P.; Ge, Y.; et al. Amoeba-inspired soft robot for integrated tumor/infection therapy and painless postoperative drainage. Adv. Sci. 2024, 11, e2407148.

21. Soto, F.; Purcell, E.; Ozen, M. O.; et al. Robotic pill for biomarker and fluid sampling in the gastrointestinal tract. Adv. Intell. Syst. 2022, 4, 2200030.

22. Nejati, S.; Wang, J.; Sedaghat, S.; et al. Smart capsule for targeted proximal colon microbiome sampling. Acta. Biomater. 2022, 154, 83-96.

23. Del-rio-ruiz, R.; Romualdo, da. Silva. D. R.; Suresh, H.; et al. Soft autonomous ingestible device for sampling the small-intestinal microbiome. Device 2024, 2, 100406.

24. Mimee, M.; Nadeau, P.; Hayward, A.; et al. An ingestible bacterial-electronic system to monitor gastrointestinal health. Science 2018, 360, 915-8.

25. Steiger, C.; Abramson, A.; Nadeau, P.; Chandrakasan, A. P.; Langer, R.; Traverso, G. Ingestible electronics for diagnostics and therapy. Nat. Rev. Mater. 2019, 4, 83-98.

26. Yogapriya, J.; Chandran, V.; Sumithra, M. G.; Anitha, P.; Jenopaul, P.; Suresh, Gnana. Dhas. C. Gastrointestinal tract disease classification from wireless endoscopy images using pretrained deep learning model. Comput. Math. Methods. Med. 2021, 2021, 5940433.

27. Manfredi, L.; Capoccia, E.; Ciuti, G.; Cuschieri, A. A soft pneumatic inchworm double balloon (SPID) for colonoscopy. Sci. Rep. 2019, 9, 11109.

28. Zhang, L.; Ren, L.; Li, S.; et al. A water strider-inspired intestinal stent actuator for controllable adhesion and unidirectional biofluid picking. Mater. Today. Bio. 2024, 28, 101216.

29. Del, Bono. V.; McCandless, M.; Gerald, A.; et al. A soft robotic “Add-on” for colonoscopy: increasing safety and comfort through force monitoring. Npj. Robot. 2025, 3, 15.

30. Weitschies, W.; Müller, L.; Grimm, M.; Koziolek, M. Ingestible devices for studying the gastrointestinal physiology and their application in oral biopharmaceutics. Adv. Drug. Deliv. Rev. 2021, 176, 113853.

31. Zhao, H.; Yu, B.; Yu, D.; et al. Electrochemical-genetic programming of protein-based magnetic soft robots for active drug delivery. Adv. Sci. 2025, 12, e2503404.

32. Zhou, Z.; Wang, L.; Yang, D.; et al. Acid-triggered charge-switchable antibacterial hydrogel for accelerated healing of gastric mucosal wounds. ACS. Nano. 2025, 19, 17533-53.

33. Abramson, A.; Dellal, D.; Kong, Y. L.; et al. Ingestible transiently anchoring electronics for microstimulation and conductive signaling. Sci. Adv. 2020, 6, eaaz0127.

34. Atuma, C.; Strugala, V.; Allen, A.; Holm, L. The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am. J. Physiol. Gastrointest. Liver. Physiol. 2001, 280, G922-9.

35. Huizinga, J. D.; Lammers, W. J. Gut peristalsis is governed by a multitude of cooperating mechanisms. Am. J. Physiol. Gastrointest. Liver. Physiol. 2009, 296, G1-8.

36. Fallingborg, J. Intraluminal pH of the human gastrointestinal tract. Dan. Med. Bull. 1999, 46, 183-96.

37. Zhao, L.; Ren, Z.; Liu, X.; Ling, Q.; Li, Z.; Gu, H. A multifunctional, self-healing, self-adhesive, and conductive sodium alginate/poly(vinyl alcohol) composite hydrogel as a flexible strain sensor. ACS. Appl. Mater. Interfaces. 2021, 13, 11344-55.

38. Rodríguez-rodríguez, R.; Carreón-álvarez, C.; Cruz-medina, C. A.; et al. A review of pH-responsive chitosan-based hydrogels for drug delivery applications. Eur. Polym. J. 2025, 237, 114173.

39. Schiller, L.R. Gastrointestinal anatomy and physiology: the essentials. Wiley-Blackwell, 2014.

40. Thursby, E.; Juge, N. Introduction to the human gut microbiota. Biochem. J. 2017, 474, 1823-36.

41. Li, C.; Guo, C.; Fitzpatrick, V.; et al. Design of biodegradable, implantable devices towards clinical translation. Nat. Rev. Mater. 2020, 5, 61-81.

42. Morsada, Z.; Hossain, M. M.; Islam, M. T.; Mobin, M. A.; Saha, S. Recent progress in biodegradable and bioresorbable materials: from passive implants to active electronics. Appl. Mater. Today. 2021, 25, 101257.

43. Li, R.; Wang, L.; Kong, D.; Yin, L. Recent progress on biodegradable materials and transient electronics. Bioact. Mater. 2018, 3, 322-33.

44. Singh, R.; Bathaei, M. J.; Istif, E.; Beker, L. A review of bioresorbable implantable medical devices: materials, fabrication, and implementation. Adv. Healthc. Mater. 2020, 9, e2000790.

45. Zhalmuratova, D.; Chung, H. Reinforced gels and elastomers for biomedical and soft robotics applications. ACS. Appl. Polym. Mater. 2020, 2, 1073-91.

46. Du, N.; Fan, Y.; Huang, H.; Guan, Y.; Nan, K. Stimuli-responsive hydrogel actuators for skin therapeutics and beyond. Soft. Sci. 2024, 4, 35.

47. Wang, K.; Jia, Y.; Zhao, C.; Zhu, X. Multiple and two-way reversible shape memory polymers: design strategies and applications. Prog. Mater. Sci. 2019, 105, 100572.

48. Chen, S.; Wang, H.; Zhao, R.; Rao, W.; Liu, J. Liquid metal composites. Matter 2020, 2, 1446-80.

49. Rus, D.; Tolley, M. T. Design, fabrication and control of soft robots. Nature 2015, 521, 467-75.

50. Lötters, J. C.; Olthuis, W.; Veltink, P. H.; Bergveld, P. The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications. J. Micromech. Microeng. 1997, 7, 145-7.

51. Li, J.; Yao, Z.; Meng, X.; et al. High-fidelity, low-hysteresis bionic flexible strain sensors for soft machines. ACS. Nano. 2024, 18, 2520-30.

52. Chen, Z.; Wang, Y.; Chen, H.; et al. A magnetic multi-layer soft robot for on-demand targeted adhesion. Nat. Commun. 2024, 15, 644.

53. Wang, B.; Chen, Y.; Ye, Z.; et al. Low-friction soft robots for targeted bacterial infection treatment in gastrointestinal tract. Cyborg. Bionic. Syst. 2024, 5, 0138.

54. Park, C. S.; Kang, Y.; Na, H.; Sun, J. Hydrogels for bioinspired soft robots. Prog. Polym. Sci. 2024, 150, 101791.

55. Kuang, X.; Arıcan, M. O.; Zhou, T.; Zhao, X.; Zhang, Y. S. Functional tough hydrogels: design, processing, and biomedical applications. Acc. Mater. Res. 2023, 4, 101-14.

56. Lu, Z.; Sheng, R.; Zhang, W.; Chen, J. Strong and tough hydrogels fabricated through molecular and structural engineering and their biomedical applications. Chem. Eng. J. 2025, 508, 160728.

57. Liu, G. W.; Pickett, M. J.; Kuosmanen, J. L. P.; et al. Drinkable in situ-forming tough hydrogels for gastrointestinal therapeutics. Nat. Mater. 2024, 23, 1292-9.

58. Yu, J.; Qin, Y.; Yang, Y.; et al. Robust hydrogel adhesives for emergency rescue and gastric perforation repair. Bioact. Mater. 2023, 19, 703-16.

59. Wang, H.; Li, T.; Li, J.; Zhao, R.; Ding, A.; Xu, F. Structural engineering of polyurethanes for biomedical applications. Prog. Polym. Sci. 2024, 151, 101803.

60. Ding, H.; Tan, P.; Fu, S.; et al. Preparation and application of pH-responsive drug delivery systems. J. Control. Release. 2022, 348, 206-38.

61. Gao, W.; Yu, X.; Zhang, C.; et al. Facile fabrications of poly (acrylic acid)-mesoporous zinc phosphate/polydopamine Janus nanoparticles as a biosafe photothermal therapy agent and a pH/NIR-responsive drug carrier. Acta. Biomater. 2024, 187, 328-39.

62. Huang, W.; Ying, R.; Wang, W.; et al. A macroporous hydrogel dressing with enhanced antibacterial and anti-inflammatory capabilities for accelerated wound healing. Adv. Funct. Mater. 2020, 30, 2000644.

63. Wen, S.; Ju, X.; Liu, W.; et al. Ca-alginate-based janus capsules with a pumping effect for intestinal-targeted controlled release. Engineering 2023, 24, 114-25.

64. Tang, L.; Wang, L.; Yang, X.; Feng, Y.; Li, Y.; Feng, W. Poly(N-isopropylacrylamide)-based smart hydrogels: design, properties and applications. Prog. Mater. Sci. 2021, 115, 100702.

65. Ma, Y.; Lu, Y.; Yue, Y.; et al. Nanocellulose-mediated bilayer hydrogel actuators with thermo-responsive, shape memory and self-sensing performances. Carbohydr. Polym. 2024, 335, 122067.

66. Delaey, J.; Dubruel, P.; Van, Vlierberghe. S. Shape-memory polymers for biomedical applications. Adv. Funct. Mater. 2020, 30, 1909047.

67. Heunis, C. M.; Wang, Z.; de, Vente. G.; Misra, S.; Venkiteswaran, V. K. A magnetic bio-inspired soft carrier as a temperature-controlled gastrointestinal drug delivery system. Macromol. Biosci. 2023, 23, e2200559.

68. Peng, S.; Cao, X.; Sun, Y.; et al. Polyurethane shape memory polymer/ph-responsive hydrogel hybrid for bi-function synergistic actuations. Gels 2023, 9, 428.

69. Wang, S.; Wang, X.; Luo, Y.; Liang, Y. A comprehensive review of conventional and stimuli-responsive delivery systems for bioactive peptides: from food to biomedical applications. Adv. Compos. Hybrid. Mater. 2025, 8, 1053.

70. Choi, S. H.; Kim, J. H.; Ahn, J.; et al. Phase patterning of liquid crystal elastomers by laser-induced dynamic crosslinking. Nat. Mater. 2024, 23, 834-43.

71. Yao, Y.; He, E.; Xu, H.; et al. Enabling liquid crystal elastomers with tunable actuation temperature. Nat. Commun. 2023, 14, 3518.

72. Song, C.; Zhang, Y.; Bao, J.; et al. Light-responsive programmable shape-memory soft actuator based on liquid crystalline polymer/polyurethane network. Adv. Funct. Mater. 2023, 33, 2213771.

73. Zhao, R.; Kim, Y.; Chester, S. A.; Sharma, P.; Zhao, X. Mechanics of hard-magnetic soft materials. J. Mech. Phys. Solids. 2019, 124, 244-63.

74. Kim, Y.; Zhao, X. Magnetic soft materials and robots. Chem. Rev. 2022, 122, 5317-64.

75. Llacer-Wintle, J.; Rivas-Dapena, A.; Chen, X. Z.; et al. Biodegradable small-scale swimmers for biomedical applications. Adv. Mater. 2021, 33, e2102049.

76. Bai, S.; Hou, S.; Chen, T.; Ma, X.; Gao, C.; Wu, A. Magnetic nanoparticle-mediated hyperthermia: from heating mechanisms to cancer theranostics. TIMS 2024, 2, 100051.

77. Wang, Y.; Qin, W.; Yang, M.; et al. High linearity, low hysteresis Ti3C2Tx MXene/AgNW/liquid metal self-healing strain sensor modulated by dynamic disulfide and hydrogen bonds. Adv. Funct. Mater. 2023, 33, 2301587.

78. Yang, J.; Fan, Y.; Xiong, X.; et al. Highly conductive and adhesive wearable sensors based on PVA/PAM/SF/PEDOT:PSS double network hydrogels. Appl. Phys. A. 2024, 130, 7329.

79. Tian, Z.; Xue, J.; Xiao, X.; Du, C.; Han, Z.; Liu, Y. Untethered multifunctional biomimetic soft actuator with programmable shape deformation capabilities and localized maneuverability. Sens. Actuators. B. Chem. 2024, 410, 135678.

80. Zhang, L.; Xing, S.; Yin, H.; et al. Skin-inspired, sensory robots for electronic implants. Nat. Commun. 2024, 15, 4777.

81. Shen, Y.; Jin, D.; Fu, M.; et al. Reactive wetting enabled anchoring of non-wettable iron oxide in liquid metal for miniature soft robot. Nat. Commun. 2023, 14, 6276.

82. Ye, Z.; Zheng, L.; He, J.; et al. Liquid-metal soft electronics coupled with multi-legged robots for targeted delivery in the gastrointestinal tract. Device 2024, 2, 100181.

83. Zhang, L.; Chen, L.; Xu, L.; Zhao, H.; Wen, R.; Xia, F. Gastrointestinal-peristalsis-inspired hydrogel actuators for NIR-controlled transport of viscous liquids. Adv. Mater. 2023, 35, e2212149.

84. Sun, B.; Liu, J.; Li, S.; Lovell, J. F.; Zhang, Y. Imaging of gastrointestinal tract ailments. J. Imaging. 2023, 9, 115.

85. Song, E.; Huang, Y.; Huang, N.; Mei, Y.; Yu, X.; Rogers, J. A. Recent advances in microsystem approaches for mechanical characterization of soft biological tissues. Microsyst. Nanoeng. 2022, 8, 77.

86. Wang, Y.; Shen, J.; Handschuh-Wang, S.; Qiu, M.; Du, S.; Wang, B. Microrobots for targeted delivery and therapy in digestive system. ACS. Nano. 2023, 17, 27-50.

87. Kumar, P.; Fleischer, D. E. Thermal therapy for gastrointestinal bleeding. Gastrointest. Endosc. Clin. N. Am. 1997, 7, 593-609.

88. Lee, Y. Y.; Erdogan, A.; Rao, S. S. How to assess regional and whole gut transit time with wireless motility capsule. J. Neurogastroenterol. Motil. 2014, 20, 265-70.

89. Hines, L.; Petersen, K.; Lum, G. Z.; Sitti, M. Soft actuators for small-scale robotics. Adv. Mater. 2017, 29, 1603483.

90. Liao, X.; Zhu, Z.; Zhang, Y.; Xiang, Z.; Lin, S.; Shang, J. Synthesis and evaluation of biodegradable copolyimide elastomer with tunable mechanical and thermal properties. Mater. Today. Commun. 2022, 31, 103573.

91. Wrede, P.; Remlova, E.; Chen, Y.; Deán-ben, X. L.; Sitti, M.; Razansky, D. Synergistic integration of materials in medical microrobots for advanced imaging and actuation. Nat. Rev. Mater. 2025.

92. Liu, Q.; Lou, P.; Sun, Z.; et al. Bio-based elastomers: design, properties, and biomedical applications. Adv. Mater. 2025, 37, e2417193.

93. Bai, R.; Yang, J.; Suo, Z. Fatigue of hydrogels. Eur. J. Mech. A. Solids. 2019, 74, 337-70.

94. An, H.; Zhang, M.; Huang, Z.; et al. Hydrophobic cross-linked chains regulate high wet tissue adhesion hydrogel with toughness, anti-hydration for dynamic tissue repair. Adv. Mater. 2024, 36, e2310164.

95. Khan, M. T.; Rehman, T. U.; Shah, L. A.; Yoo, H. Development of acrylic acid-agar-based adhesive hydrogel: influence of tannic acid concentration on adhesion performance. Int. J. Adhes. Adhesives. 2025, 142, 104088.

96. Peng, W.; Lai, Y.; Jiang, Y.; et al. Charge balance transition enabled Janus hydrogel for robust wet-tissue adhesion and anti-postoperative adhesion. Bioact. Mater. 2025, 52, 123-38.

97. Mo, C.; Zhang, W.; Zhu, K.; et al. Advances in injectable hydrogels based on diverse gelation methods for biomedical imaging. Small. Methods. 2024, 8, e2400076.

98. Kong, Q.; Tan, Y.; Zhang, H.; et al. Mimosa-inspired body temperature-responsive shape memory polymer networks: high energy densities and multi-recyclability. Adv. Sci. 2024, 11, e2407596.

99. Li, D.; Sun, Y.; Li, X.; et al. 3D printing of near-ambient responsive liquid crystal elastomers with enhanced nematic order and pluralized transformation. ACS. Nano. 2025, 19, 7075-87.

100. Ye, Z.; Hou, P.; Zhang, L. Preparation and characterization of PLA/TPU/HA enhanced shape memory blends. Mater. Today. Commun. 2025, 47, 113023.

101. Xie, F.; Zhang, T.; Bryant, P.; Kurusingal, V.; Colwell, J. M.; Laycock, B. Degradation and stabilization of polyurethane elastomers. Prog. Polym. Sci. 2019, 90, 211-68.

102. Chen, S.; Xing, W.; Wang, H.; et al. A bottom-up approach to generate isotropic liquid metal network in polymer-enabled 3D thermal management. Chem. Eng. J. 2022, 439, 135674.

103. Chitambar, C. R. Medical applications and toxicities of gallium compounds. Int. J. Environ. Res. Public. Health. 2010, 7, 2337-61.

104. Hargreaves, B. A.; Worters, P. W.; Pauly, K. B.; Pauly, J. M.; Koch, K. M.; Gold, G. E. Metal-induced artifacts in MRI. AJR. Am. J. Roentgenol. 2011, 197, 547-55.

105. Ali, A.; Zafar, H.; Zia, M.; et al. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl. 2016, 9, 49-67.

106. Ma, D.; Chen, J.; Luo, Y.; Wang, H.; Shi, X. Zwitterion-coated ultrasmall iron oxide nanoparticles for enhanced T1-weighted magnetic resonance imaging applications. J. Mater. Chem. B. 2017, 5, 7267-73.

107. Wang, X.; Fan, L.; Zhang, J.; et al. Printed conformable liquid metal e-skin-enabled spatiotemporally controlled bioelectromagnetics for wireless multisite tumor therapy. Adv. Funct. Mater. 2019, 29, 1907063.

108. Shellock, F. G. Radiofrequency energy-induced heating during mr procedures: a review. J. Magn. Reson. Imaging. 2000, 12, 30-6.

109. Shen, Z.; Wu, A.; Chen, X. Iron oxide nanoparticle based contrast agents for magnetic resonance imaging. Mol. Pharm. 2017, 14, 1352-64.

110. Mhlanga, N.; Mphuthi, N.; Van, der. Walt. H.; Nyembe, S.; Mokhena, T.; Sikhwivhilu, L. Nanostructures and nanoparticles as medical diagnostic imaging contrast agents: a review. Mater. Today. Chem. 2024, 40, 102233.

111. D. Pitfalls. in. Musculoskeletal. Radiology. , Peh, W.C.G., Eds.; Cham, Springer International Publishing; 2017; pp 45-59.

112. Naha, P. C.; Hsu, J. C.; Kim, J.; et al. Dextran-coated cerium oxide nanoparticles: a computed tomography contrast agent for imaging the gastrointestinal tract and inflammatory bowel disease. ACS. Nano. 2020, 14, 10187-97.

113. Akagi, M.; Nakamura, Y.; Higaki, T.; et al. Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT. Eur. Radiol. 2019, 29, 6163-71.

114. Zlitni, A.; Gambhir, S. S. Molecular imaging agents for ultrasound. Curr. Opin. Chem. Biol. 2018, 45, 113-20.

115. Mohammadlou B, Ippolito S, FitzPatrick J, Upadhyay P, Burnett TL, Gogotsi Y. Characterization of MXene-based materials by X-Ray computed tomography. Small. Methods. 2025, 9, e2500262.

116. Lin, J.; Chen, X.; Huang, P. Graphene-based nanomaterials for bioimaging. Adv. Drug. Deliv. Rev. 2016, 105, 242-54.

117. Shellock, F. G.; Crues, J. V. MR procedures: biologic effects, safety, and patient care. Radiology 2004, 232, 635-52.

118. Lee, B.; Lee, Y.; Lee, N.; Kim, D.; Hyeon, T. Design of oxide nanoparticles for biomedical applications. Nat. Rev. Mater. 2025, 10, 252-67.

119. Xiong, Z.; Feng, C.; Tang, J.; et al. Rationally constructing the theranostics hydrogels for targeted CT imaging and healing of inflammatory bowel disease. Chem. Eng. J. 2025, 513, 162986.

120. Sridharan, B.; Lim, H. G. Exosomes and ultrasound: the future of theranostic applications. Mater. Today. Bio. 2023, 19, 100556.

121. Feldman, M. K.; Katyal, S.; Blackwood, M. S. US artifacts. Radiographics 2009, 29, 1179-89.

122. Beyer, T.; Bailey, D. L.; Birk, U. J.; et al. Medical physics and imaging-a timely perspective. Front. Phys. 2021, 9, 634693.

123. Shen, Y.; Cao, J.; Zhou, E.; et al. Tough hydrogel-coated containment capsule of magnetic liquid metal for remote gastrointestinal operation. Natl. Sci. Rev. 2025, 12, nwaf042.

124. Srinivasan, S. S.; Alshareef, A.; Hwang, A. V.; et al. RoboCap: robotic mucus-clearing capsule for enhanced drug delivery in the gastrointestinal tract. Sci. Robot. 2022, 7, eabp9066.

125. Consumi, V.; Lindenroth, L.; Merlin, J.; Stoyanov, D.; Stilli, A. Design and evaluation of the SoftSCREEN capsule for colonoscopy. IEEE. Robot. Autom. Lett. 2023, 8, 1659-66.

126. Hao, B.; Wang, X.; Dong, Y.; et al. Focused ultrasound enables selective actuation and Newton-level force output of untethered soft robots. Nat. Commun. 2024, 15, 5197.

127. Nan, M.; Go, G.; Song, H.; et al. Multistimulus-responsive miniature soft actuator with programmable shape-morphing design for biomimetic and biomedical applications. Adv. Funct. Mater. 2024, 34, 2401776.

128. Huang, W.; Wang, W.; Wang, W.; Hao, Y.; Xue, C.; Mao, X. A double-layer polysaccharide hydrogel (DPH) for the enhanced intestine-targeted oral delivery of probiotics. Engineering 2024, 34, 187-94.

129. Zhang, X.; Chen, G.; Fu, X.; Wang, Y.; Zhao, Y. Magneto-responsive microneedle robots for intestinal macromolecule delivery. Adv. Mater. 2021, 33, e2104932.

130. Levy, J. A.; Straker, M. A.; Stine, J. M.; Beardslee, L. A.; Ghodssi, R. Magnetically triggered ingestible capsule for localized microneedle drug delivery. Device 2024, 2, 100438.

131. Chen, W.; Wainer, J.; Ryoo, S. W.; et al. Dynamic omnidirectional adhesive microneedle system for oral macromolecular drug delivery. Sci. Adv. 2022, 8, eabk1792.

132. Ze, Q.; Wu, S.; Dai, J.; et al. Spinning-enabled wireless amphibious origami millirobot. Nat. Commun. 2022, 13, 3118.

133. Gu, H.; Möckli, M.; Ehmke, C.; et al. Self-folding soft-robotic chains with reconfigurable shapes and functionalities. Nat. Commun. 2023, 14, 1263.

134. Sun, Y.; Zhang, W.; Gu, J.; et al. Magnetically driven capsules with multimodal response and multifunctionality for biomedical applications. Nat. Commun. 2024, 15, 1839.

135. Li, Q.; Niu, F.; Yang, H.; et al. Magnetically actuated soft microrobot with environmental adaptative multimodal locomotion towards targeted delivery. Adv. Sci. 2024, 11, e2406600.

136. Abramson, A.; Caffarel-Salvador, E.; Khang, M.; et al. An ingestible self-orienting system for oral delivery of macromolecules. Science 2019, 363, 611-5.

137. Tong, D.; Zhao, Y.; Wu, Z.; et al. Octopus-inspired soft robot for slow drug release. Biomimetics 2024, 9, 340.

138. Soon, R. H.; Yin, Z.; Dogan, M. A.; et al. Pangolin-inspired untethered magnetic robot for on-demand biomedical heating applications. Nat. Commun. 2023, 14, 3320.

139. Gao, X.; Li, J.; Li, J.; Zhang, M.; Xu, J. Pain-free oral delivery of biologic drugs using intestinal peristalsis-actuated microneedle robots. Sci. Adv. 2024, 10, eadj7067.

140. Min, H.; Bae, D.; Jang, S.; et al. Stiffness-tunable velvet worm-inspired soft adhesive robot. Sci. Adv. 2024, 10, eadp8260.

141. Li, W.; Lou, C.; Liu, S.; et al. Climbing plant-inspired multi-responsive biomimetic actuator with transitioning complex surfaces. Adv. Funct. Mater. 2025, 35, 2414733.

142. Chen, W.; Chen, X.; Yang, M.; et al. Triple-configurational magnetic robot for targeted drug delivery and sustained release. ACS. Appl. Mater. Interfaces. 2021, 13, 45315-24.

143. Lum, G. Z.; Ye, Z.; Dong, X.; et al. Shape-programmable magnetic soft matter. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, E6007-15.

144. Liu, D.; Liu, X.; Chen, Z.; et al. Magnetically driven soft continuum microrobot for intravascular operations in microscale. Cyborg. Bionic. Syst. 2022, 2022, 9850832.

145. Liu, H.; Chu, H.; Yuan, H.; et al. Bioinspired multifunctional self-sensing actuated gradient hydrogel for soft-hard robot remote interaction. Nanomicro. Lett. 2024, 16, 69.

146. Wei, T.; Hu, Y.; Yang, M.; Shi, C.; Hu, C. A magnetic patch robot with photothermal-activated multi-modality for targeted anti-postoperative adhesion. Int. J. Extrem. Manuf. 2025, 7, 055502.

147. Ying, B.; Nan, K.; Zhu, Q.; et al. An electroadhesive hydrogel interface prolongs porcine gastrointestinal mucosal theranostics. Sci. Transl. Med. 2025, 17, eadq1975.

148. Zhang, L.; Zhao, S.; Zhou, X.; et al. A magnetic-driven multi-motion robot with position/orientation sensing capability. Research 2023, 6, 0177.

149. Chen, Z.; Chen, H.; Fang, K.; Liu, N.; Yu, J. Magneto-thermal hydrogel swarms for targeted lesion sealing. Adv. Healthc. Mater. 2025, 14, e2403076.

150. Li, W.; Sang, M.; Lou, C.; et al. Triple-responsive soft actuator with plastically retentive deformation and magnetically programmable recovery. ACS. Nano. 2023, 17, 24042-54.

151. Ebrahimi, N.; Bi, C.; Cappelleri, D. J.; et al. Magnetic actuation methods in bio/soft robotics. Adv. Funct. Mater. 2021, 31, 2005137.

152. Li, H.; Jiang, S.; Deng, Q.; et al. Programmable magnetic hydrogel robots with drug delivery and physiological sensing capabilities. Mater. Today. 2025, 87, 66-76.

153. Kaynak, M.; Dirix, P.; Sakar, M. S. Addressable acoustic actuation of 3D printed soft robotic microsystems. Adv. Sci. 2020, 7, 2001120.

154. Wu, S.; Lee, S. J.; Zhu, Y. Thermally actuated soft robotics. Adv. Mater. 2025, Epub ahead of print.

155. Huan, Y.; Ren, X.; Firrincieli, A.; et al. Flexible over-the-tube device for soft-tethered colonoscopy. IEEE/ASME. Trans. Mechatron. 2024, 29, 1611-21.

156. Melancon, D.; Forte, A. E.; Kamp, L. M.; Gorissen, B.; Bertoldi, K. Inflatable origami: multimodal deformation via multistability. Adv. Funct. Mater. 2022, 32, 2201891.

157. Zhu, K.; Nguyen, C. C.; Sharma, B.; et al. Development of a bioinspired soft robotic system for teleoperated endoscopic surgery. Cyborg. Bionic. Syst. 2025, 6, 0289.

158. Nguyen, C. C.; Teh, T.; Thai, M. T.; et al. A handheld hydraulic soft robotic device with bidirectional bending end-effector for minimally invasive surgery. IEEE. Trans. Med. Robot. Bionics. 2023, 5, 590-601.

159. Zhang, C.; Duan, Y.; Jiao, Z.; et al. Functional fluid-based soft robotic actuation. Adv. Mater. 2025, 37, e2502669.

160. Siéfert, E.; Reyssat, E.; Bico, J.; Roman, B. Bio-inspired pneumatic shape-morphing elastomers. Nat. Mater. 2019, 18, 24-8.

161. Yoon, Y.; Park, H.; Lee, J.; et al. Bioinspired untethered soft robot with pumpless phase change soft actuators by bidirectional thermoelectrics. Chem. Eng. J. 2023, 451, 138794.

162. Beatty, R.; Mendez, K. L.; Schreiber, L. H. J.; et al. Soft robot-mediated autonomous adaptation to fibrotic capsule formation for improved drug delivery. Sci. Robot. 2023, 8, eabq4821.

163. Cai, L.; Chen, G.; Sun, L.; et al. Rocket-inspired effervescent motors for oral macromolecule delivery. Adv. Mater. 2023, 35, e2210679.

164. Karshalev, E.; Zhang, Y.; Esteban-Fernández, de. Ávila. B.; et al. Micromotors for active delivery of minerals toward the treatment of iron deficiency anemia. Nano. Lett. 2019, 19, 7816-26.

165. An, Z.; Lin, E.; Wu, Z.; Kang, Y. Dual-responsive micromotor pill for targeted retention in the intestines in vivo. J. Mater. Chem. B. 2025, 13, 1296-301.

166. Han, Z.; Wang, P.; Mao, G.; et al. Dual pH-responsive hydrogel actuator for lipophilic drug delivery. ACS. Appl. Mater. Interfaces. 2020, 12, 12010-7.

167. Fu, Y. J.; Zhao, X.; Wang, L. Y.; et al. A gas therapy strategy for intestinal flora regulation and colitis treatment by nanogel-based multistage NO delivery microcapsules. Adv. Mater. 2024, 36, e2309972.

168. Wang, J.; Wu, S.; Zhang, W.; et al. Selective decorating Ag and MnOx nanoparticles on halloysite and used as micromotor for bacterial killing. Appl. Clay. Sci. 2022, 216, 106352.

169. Feng, Y.; An, M.; Liu, Y.; Sarwar, M. T.; Yang, H. Advances in chemically powered micro/nanorobots for biological applications: a review. Adv. Funct. Mater. 2023, 33, 2209883.

170. Wei, J.; Jia, S.; Guan, J.; Ma, C.; Shao, Z. Robust and highly sensitive cellulose nanofiber-based humidity actuators. ACS. Appl. Mater. Interfaces. 2021, 13, 54417-27.

171. Sun, L.; Che, L.; Li, M.; et al. Reinforced nacre-like MXene/sodium alginate composite films for bioinspired actuators driven by moisture and sunlight. Small 2024, 20, e2406832.

172. Chen, Z.; Chen, J.; Jung, S.; et al. Bioinspired and biohybrid soft robots: principles and emerging technologies. Matter 2025, 8, 102045.

173. Wang, B.; Chan, K. F.; Yuan, K.; et al. Endoscopy-assisted magnetic navigation of biohybrid soft microrobots with rapid endoluminal delivery and imaging. Sci. Robot. 2021, 6, eabd2813.

174. Li, Z.; Duan, Y.; Zhang, F.; et al. Biohybrid microrobots regulate colonic cytokines and the epithelium barrier in inflammatory bowel disease. Sci. Robot. 2024, 9, eadl2007.

175. Yang, Z.; Liu, L.; Li, Z.; Jiao, Y.; Zhang, L.; Cui, Y. A magnetically-actuated ultrasound capsule endoscope (MUSCE) for endoluminal imaging in tubular environments. IEEE. Robot. Autom. Lett. 2025, 10, 2590-7.

176. Xu, Z.; Wu, Z.; Yuan, M.; Chen, Y.; Ge, W.; Xu, Q. Versatile magnetic hydrogel soft capsule microrobots for targeted delivery. iScience 2023, 26, 106727.

177. Wang, C.; Mzyk, A.; Schirhagl, R.; Misra, S.; Venkiteswaran, V. K. Biocompatible film-coating of magnetic soft robots for mucoadhesive locomotion. Adv. Mater. Technol. 2023, 8, 2201813.

178. Liu, R.; Chen, Y.; Zhen, Y.; Zhang, J. A magnetic capsule robot with an exoskeleton to withstand esophageal pressure and delivery drug in stomach. IEEE. Robot. Autom. Lett. 2024, 9, 11802-9.

179. Hu, X.; Zhou, Y.; Li, M.; Wu, J.; He, G.; Jiao, N. Catheter-assisted bioinspired adhesive magnetic soft millirobot for drug delivery. Small 2024, 20, e2306510.

180. Wu, L.; Wang, L.; Liu, X.; et al. Milk-derived exosomes exhibit versatile effects for improved oral drug delivery. Acta. Pharm. Sin. B. 2022, 12, 2029-42.

181. Liu, X.; Yang, Y.; Inda, M. E.; et al. Magnetic living hydrogels for intestinal localization, retention, and diagnosis. Adv. Funct. Mater. 2021, 31, 2010918.

182. Yang, Z.; Xu, C.; Lee, J. X.; Lum, G. Z. Magnetic miniature soft robot with reprogrammable drug-dispensing functionalities: toward advanced targeted combination therapy. Adv. Mater. 2024, 36, e2408750.

183. Kumawat, A.; Karmakar, M.; Ghoroi, C. pH-responsive, reactive oxygen species scavenging and highly swellable nanogel for colon-targeted oral drug delivery. ACS. Appl. Nano. Mater. 2024, 7, 18964-78.

184. Xiao, B.; Xu, Y.; Edwards, S.; Balakumar, L.; Dong, X. Sensing mucus physiological property in situ by wireless millimeter-scale soft robots. Adv. Funct. Mater. 2024, 34, 2307751.

185. You, S. S.; Gierlach, A.; Schmidt, P.; et al. An ingestible device for gastric electrophysiology. Nat. Electron. 2024, 7, 497-508.

186. Wang, C.; Wu, Y.; Dong, X.; Armacki, M.; Sitti, M. In situ sensing physiological properties of biological tissues using wireless miniature soft robots. Sci. Adv. 2023, 9, eadg3988.

187. Inda-Webb, M. E.; Jimenez, M.; Liu, Q.; et al. Sub-1.4 cm3 capsule for detecting labile inflammatory biomarkers in situ. Nature 2023, 620, 386-92.

188. Sun, Y.; Chen, T.; Li, D.; et al. Stretchable, multiplexed, and bimodal sensing electronic armor for colonoscopic continuum robot enhanced by triboelectric artificial synapse. Adv. Mater. 2025, 37, e2502203.

189. Sahafi, A.; Wang, Y.; Rasmussen, C. L. M.; et al. Edge artificial intelligence wireless video capsule endoscopy. Sci. Rep. 2022, 12, 13723.

190. De, la. Paz. E.; Maganti, N. H.; Trifonov, A.; et al. A self-powered ingestible wireless biosensing system for real-time in situ monitoring of gastrointestinal tract metabolites. Nat. Commun. 2022, 13, 7405.

191. Li, Y.; Halwah, A.; Bhuiyan, S. R. A.; Yao, S. Bio-inspired untethered robot-sensor platform for minimally invasive biomedical sensing. ACS. Appl. Mater. Interfaces. 2023, 15, 58839-49.

192. Sharma, S.; Ramadi, K. B.; Poole, N. H.; et al. Location-aware ingestible microdevices for wireless monitoring of gastrointestinal dynamics. Nat. Electron. 2023, 6, 242-56.

193. Madhvapathy, S. R.; Bury, M. I.; Wang, L. W.; et al. Miniaturized implantable temperature sensors for the long-term monitoring of chronic intestinal inflammation. Nat. Biomed. Eng. 2024, 8, 1040-52.

194. Yang, J.; Zhou, Z.; Runciman, M.; Avery, J.; Sun, Z.; Mylonas, G. A soft inflatable cable-driven parallel robot with a variable stiffness end-effector for advanced interventional endoscopy. IEEE. Trans. Biomed. Eng. 2025, 72, 2794-803.

195. Nguyen, C. C.; Davies, J.; Ashok, A.; et al. Motor-free soft robots for cancer detection, surgery, and in situ bioprinting. Adv. Healthc. Mater. 2025, 14, e2404623.

196. Nan, K.; Wong, K.; Li, D.; et al. An ingestible, battery-free, tissue-adhering robotic interface for non-invasive and chronic electrostimulation of the gut. Nat. Commun. 2024, 15, 6749.

197. Wu, H.; Wang, Y.; Li, H.; et al. Accelerated intestinal wound healing via dual electrostimulation from a soft and biodegradable electronic bandage. Nat. Electron. 2024, 7, 299-312.

198. Srinivasan, S. S.; Dosso, J.; Huang, H. W.; et al. An ingestible self-propelling device for intestinal reanimation. Sci. Robot. 2024, 9, eadh8170.

199. Wang, Y.; Hu, X.; Cui, L.; et al. Bioinspired handheld time-share driven robot with expandable DoFs. Nat. Commun. 2024, 15, 768.

200. Greenidge, N. J.; Calmé, B.; Moldovan, A. C.; et al. Harnessing the oloid shape in magnetically driven robots to enable high-resolution ultrasound imaging. Sci. Robot. 2025, 10, eadq4198.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/