REFERENCES

1. Zhang, Q.; Ren, Z.; Jia, P.; et al. An ultra-miniaturized fiber humidity sensor based on near-parallel ion pathways induced efficient water-electricity conversion. Adv. Mater. 2025, 37, e2411558.

2. Zhang, Z.; Li, J.; Chen, H.; et al. Scalable fabrication of uniform fast-response humidity field sensing array for respiration recognition and contactless human-machine interaction. Adv. Funct. Mater. 2025, 35, 2502583.

3. Zhang, M.; Duan, Z.; Yuan, Z.; Jiang, Y.; Tai, H. Observing mixed chemical reactions at the positive electrode in the high-performance self-powered electrochemical humidity sensor. ACS. Nano. 2024, 18, 34158-70.

4. Ma, J.; Sun, H.; Chu, Z.; et al. Self-powered and self-calibrated sensing system for real-time environmental monitoring. Sci. Adv. 2025, 11, eadw3745.

5. Zhang, H.; Su, K.; Yin, S.; Yang, Z. Recent progress of flexible wearable respiratory sensing and monitoring system. J. Funct. Mater. Devices. 2021, 27, 281-91. https://www.jfmd.net.cn/en/article/id/5dfec71e-4922-4b42-b648-105dd2bfd4f3. (accessed 29 Oct 2025).

6. Vishwakarma, A.; Kanaujia, K.; Hait, S. Chapter 2 - Global scenario of E-waste generation: trends and future predictions. In Global E-waste management strategies and future implications, Arya, S.; Kumar, S., Eds.; Elsevier: 2023; pp. 13-30.

7. Lu, Y.; Yang, G.; Shen, Y.; Yang, H.; Xu, K. Multifunctional flexible humidity sensor systems towards noncontact wearable electronics. Nanomicro. Lett. 2022, 14, 150.

8. Trung, V. D.; Zhao, W.; Le, P.; et al. Iontronic dual pressure-humidity sensor based on poly(vinyl alcohol)/phosphoric acid/Ni-Al layered double hydroxide hydrogel@melamine sponge for advanced wearable electronics. Mater. Res. Bull. 2025, 186, 113357.

9. Li, S.; Zhang, Y.; Liang, X.; et al. Humidity-sensitive chemoelectric flexible sensors based on metal-air redox reaction for health management. Nat. Commun. 2022, 13, 5416.

10. Liang, A.; Chen, X. A non-contact porous composite fiber paper-based humidity sensor for wearable breathing and skin humidity monitoring. J. Mater. Chem. A. 2024, 12, 29081-91.

11. Lu, S.; Fang, Z.; Lei, M.; et al. Self-healable graphene-cellulose nanofibril composite with strain/humidity responsivity for wearable respiratory monitoring. Carbon 2025, 242, 120473.

12. Paolucci, V.; De Santis, J.; Ricci, V.; Lozzi, L.; Giorgi, G.; Cantalini, C. Bidimensional engineered amorphous a-SnO2 interfaces: synthesis and gas sensing response to H2S and humidity. ACS. Sens. 2022, 7, 2058-68.

13. Mei, L.; Gao, Z.; Yang, R.; et al. Phase-switchable preparation of solution-processable WS2 mono- or bilayers. Nat. Synth. 2025, 4, 303-13.

14. Li, T.; Zhao, T.; Zhang, H.; et al. A skin-conformal and breathable humidity sensor for emotional mode recognition and non-contact human-machine interface. npj. Flex. Electron. 2024, 8, 290.

15. Wu, J.; Zhang, S.; Gu, Q.; Zhang, Q. Recent progress in covalent organic frameworks for flexible electronic devices. FlexMat 2024, 1, 160-72.

16. Kan, Z.; Hu, W.; Hu, C.; et al. Time-frequency domain NO2-humidity sensor with full-range tolerance based on Pt single-atom sensitized Nb2CTx nanosheets. Adv. Mater. 2025, 37, e2506463.

17. Zhou, Z.; Song, Q.; Huang, B.; Feng, S.; Lu, C. Facile fabrication of densely packed Ti3C2 MXene/nanocellulose composite films for enhancing electromagnetic interference shielding and electro-/photothermal performance. ACS. Nano. 2021, 15, 12405-17.

18. Chen, B.; Lu, Z.; Feng, S.; Zhou, Z.; Lu, C. Redox-active nitroxide radicals grafted onto MXene: boosting energy storage via improved charge transfer and surface capacitance. ACS. Energy. Lett. 2023, 8, 1096-106.

19. Huang, M.; Lu, J.; Ji, J.; et al. Non-contact humidity monitoring: boosting the performance of all-printed humidity sensor using PDDA-modified Ti3C2Tx nanoribbons. Chem. Eng. J. 2024, 485, 149633.

20. Zhang, H.; Xu, X.; Huang, M.; et al. Interlayer cross-linked MXene enables ultra-stable printed paper-based flexible sensor for real-time humidity monitoring. Chem. Eng. J. 2024, 495, 153343.

21. Liu, T.; Qu, D.; Guo, L.; et al. MXene/TPU composite film for humidity sensing and human respiration monitoring. Adv. Sens. Res. 2024, 3, 2300014.

22. Lu, Y.; Wang, M.; Wang, D.; et al. Flexible impedance sensor based on Ti3C2Tx MXene and graphitic carbon nitride nanohybrid for humidity-sensing application with ultrahigh response. Rare. Met. 2023, 42, 2204-13.

23. Huang, B.; Wu, S.; Liu, J.; Liu, J.; Peng, B.; Zhou, Z. Aerosol jet printing of polyelectrolyte-modified MXene ink for a multifunctional humidity and temperature flexible sensor. Chem. Eng. J. 2025, 519, 165403.

24. Ni, Y.; Zang, X.; Yang, Y.; et al. Environmental stability stretchable organic hydrogel humidity sensor for respiratory monitoring with ultrahigh sensitivity. Adv. Funct. Mater. 2024, 34, 2402853.

25. Zhang, C. J.; Pinilla, S.; Mcevoy, N.; et al. Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem. Mater. 2017, 29, 4848-56.

26. Soomro, R. A.; Zhang, P.; Fan, B.; Wei, Y.; Xu, B. Progression in the oxidation stability of MXenes. Nanomicro. Lett. 2023, 15, 108.

27. Sheng, H.; Ma, Y.; Zhang, H.; et al. Integration of supercapacitors with sensors and energy-harvesting devices: a review. Adv. Mater. Technol. 2024, 9, 2301796.

28. Wang, Y.; Zhao, Y.; Yu, L.; et al. Deformation-tolerant, wireless-charging microbatteries for seamlessly integrated omnidirectional stretchable electronics. Sci. Adv. 2025, 11, eads6892.

29. Sheng, H.; Jiang, L.; Wang, Q.; et al. A soft implantable energy supply system that integrates wireless charging and biodegradable Zn-ion hybrid supercapacitors. Sci. Adv. 2023, 9, eadh8083.

30. Arundel, A. V.; Sterling, E. M.; Biggin, J. H.; Sterling, T. D. Indirect health effects of relative humidity in indoor environments. Environ. Health. Perspect. 1986, 65, 351-61.

31. Worden, J.; Noone, D.; Bowman, K.; Tropospheric Emission Spectrometer Science Team and Data contributors. Importance of rain evaporation and continental convection in the tropical water cycle. Nature 2007, 445, 528-32.

32. Lin, S.; Ma, S.; Chen, K.; et al. A humidity-driven film with fast response and continuous rolling locomotion. Chem. Eng. J. 2024, 495, 153294.

33. Quan, X.; Zhu, K.; Liu, Y.; Yan, B. Bionic luminescent sensors based on covalent organic frameworks: auditory, gustatory, and olfactory information monitoring for multimode perception. ACS. Nano. 2025, 19, 3852-64.

34. Zhang, C.; Ma, Y.; Zhang, X.; et al. Two-dimensional transition metal carbides and nitrides (MXenes): synthesis, properties, and electrochemical energy storage applications. Energy. Environ. Mater. 2020, 3, 29-55.

35. Chen, M.; Fan, Q.; Chen, K.; Majkova, E.; Huang, Q.; Liang, K. MXene materials: pioneering sustainable energy storage solutions. Carbon. Neutral. 2024, 3, 493-500.

36. Tian, Y.; Hou, P.; Zhang, H.; et al. Theoretical insights on potential-dependent oxidation behaviors and antioxidant strategies of MXenes. Nat. Commun. 2024, 15, 10099.

37. Chen, B.; Lu, Z.; Chen, X.; Zhou, Z.; Lu, C. Two-electron conversion nitroxide radicals-based electrode synergistically enhancing charge storage in water-in-salt electrolyte. Chem. Eng. J. 2024, 490, 151768.

38. Cao, W.; Nie, J.; Cao, Y.; et al. A review of how to improve Ti3C2Tx MXene stability. Chem. Eng. J. 2024, 496, 154097.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/