REFERENCES
1. Mahato, K.; Saha, T.; Ding, S.; Sandhu, S. S.; Chang, A.; Wang, J. Hybrid multimodal wearable sensors for comprehensive health monitoring. Nat. Electron. 2024, 7, 735-50.
2. Walter, J. R.; Xu, S.; Rogers, J. A. From lab to life: how wearable devices can improve health equity. Nat. Commun. 2024, 15, 44634.
3. Someya, T.; Bao, Z.; Malliaras, G. G. The rise of plastic bioelectronics. Nature 2016, 540, 379-85.
4. Cai, C.; Liu, T.; Meng, X.; et al. Lightweight and mechanically robust cellulosic triboelectric materials for wearable self-powered rehabilitation training. ACS. Nano. 2025, 19, 396-405.
5. Lee, H.; Lee, S.; Kim, J.; et al. Stretchable array electromyography sensor with graph neural network for static and dynamic gestures recognition system. npj. Flex. Electron. 2023, 7, 246.
6. Xia, H.; Zhang, Y.; Rajabi, N.; et al. Shaping high-performance wearable robots for human motor and sensory reconstruction and enhancement. Nat. Commun. 2024, 15, 1760.
7. Xu, R.; She, M.; Liu, J.; et al. Skin-friendly and wearable iontronic touch panel for virtual-real handwriting interaction. ACS. Nano. 2023, 17, 8293-302.
8. Sun, D.; Feng, Y.; Sun, S.; et al. Transparent, self-adhesive, conductive organohydrogels with fast gelation from lignin-based self-catalytic system for extreme environment-resistant triboelectric nanogenerators. Adv. Funct. Mater. 2022, 32, 2201335.
9. Cao, J.; Wu, B.; Yuan, P.; Liu, Y.; Hu, C. Progress of research on conductive hydrogels in flexible wearable sensors. Gels 2024, 10, 144.
10. Kim, J.; Kim, Y.; Lee, J.; Shin, M.; Son, D. Wearable liquid metal composite with skin-adhesive chitosan-alginate-chitosan hydrogel for stable electromyogram signal monitoring. Polymers 2023, 15, 3692.
11. Yin, R.; Wang, D.; Zhao, S.; Lou, Z.; Shen, G. Wearable sensors-enabled human-machine interaction systems: from design to application. Adv. Funct. Mater. 2021, 31, 2008936.
12. Dang, C.; Zhang, F.; Li, Y.; et al. Lithium bonds enable small biomass molecule-based ionoelastomers with multiple functions for soft intelligent electronics. Small 2022, 18, e2200421.
13. Shao, C.; Chang, H.; Wang, M.; Xu, F.; Yang, J. High-strength, tough, and self-healing nanocomposite physical hydrogels based on the synergistic effects of dynamic hydrogen bond and dual coordination bonds. ACS. Appl. Mater. Interfaces. 2017, 9, 28305-18.
14. Shao, C.; Meng, L.; Wang, M.; et al. Mimicking dynamic adhesiveness and strain-stiffening behavior of biological tissues in tough and self-healable cellulose nanocomposite hydrogels. ACS. Appl. Mater. Interfaces. 2019, 11, 5885-95.
15. Yang, S.; Cheng, J.; Shang, J.; et al. Stretchable surface electromyography electrode array patch for tendon location and muscle injury prevention. Nat. Commun. 2023, 14, 6494.
16. Liang, Q.; Xia, X.; Sun, X.; et al. Highly stretchable hydrogels as wearable and implantable sensors for recording physiological and brain neural signals. Adv. Sci. 2022, 9, e2201059.
17. Wang, H.; Ding, Q.; Luo, Y.; et al. High-performance hydrogel sensors enabled multimodal and accurate human-machine interaction system for active rehabilitation. Adv. Mater. 2024, 36, e2309868.
18. Chang, Y.; Wang, L.; Li, R.; et al. First decade of interfacial iontronic sensing: from droplet sensors to artificial skins. Adv. Mater. 2021, 33, e2003464.
19. Han, Q.; Zhang, C.; Guo, T.; et al. Hydrogel nanoarchitectonics of a flexible and self-adhesive electrode for long-term wireless electroencephalogram recording and high-accuracy sustained attention evaluation. Adv. Mater. 2023, 35, e2209606.
20. Lu, J.; Li, Q.; Huang, Q.; et al. A highly sensitive surface electrode for electrophysiological monitoring. Adv. Funct. Mater. 2025, 35, 2421132.
21. Liu, S.; Rao, Y.; Jang, H.; Tan, P.; Lu, N. Strategies for body-conformable electronics. Matter 2022, 5, 1104-36.
22. Lu, Y.; Yang, G.; Wang, S.; et al. Stretchable graphene-hydrogel interfaces for wearable and implantable bioelectronics. Nat. Electron. 2024, 7, 51-65.
23. Li, M.; Zhang, Y.; Lian, L.; et al. Flexible accelerated-wound-healing antibacterial mxene-based epidermic sensor for intelligent wearable human-machine interaction. Adv. Funct. Mater. 2022, 32, 2208141.
24. Wang, W.; Zhou, H.; Xu, Z.; Li, Z.; Zhang, L.; Wan, P. Flexible conformally bioadhesive MXene hydrogel electronics for machine learning-facilitated human-interactive sensing. Adv. Mater. 2024, 36, e2401035.
25. Zheng, K.; Zheng, C.; Zhu, L.; et al. Machine learning enabled reusable adhesion, entangled network-based hydrogel for long-term, High-Fidelity EEG Recording and Attention Assessment. Nanomicro. Lett. 2025, 17, 281.
26. Huang, X.; Chen, C.; Ma, X.; et al.
27. Liu, Y.; Wang, C.; Xue, J.; et al. Body temperature enhanced adhesive, antibacterial, and recyclable ionic hydrogel for epidermal electrophysiological monitoring. Adv. Healthc. Mater. 2022, 11, e2200653.
28. Park, J.; Kim, J. Y.; Heo, J. H.; et al. Intrinsically nonswellable multifunctional hydrogel with dynamic nanoconfinement networks for robust tissue-adaptable bioelectronics. Adv. Sci. 2023, 10, e2207237.
29. Xu, H.; Zheng, W.; Zhang, Y.; et al. A fully integrated, standalone stretchable device platform with in-sensor adaptive machine learning for rehabilitation. Nat. Commun. 2023, 14, 7769.
30. Wu, J.; Xian, J.; He, C.; Lin, H.; Li, J.; Li, F. Asymmetric wettability hydrogel surfaces for enduring electromyographic monitoring. Adv. Mater. 2024, 36, e2405372.
31. Chen, J. X. M.; Chen, T.; Zhang, Y.; et al. Conductive bio-based hydrogel for wearable electrodes via direct ink writing on skin. Adv. Funct. Mater. 2024, 34, 2403721.
32. Bai, Z.; Wang, X.; Huang, M.; et al. Smart battery-free and wireless bioelectronic platform based on a nature-skin-derived organohydrogel for chronic wound diagnosis, assessment, and accelerated healing. Nano. Energy. 2023, 118, 108989.
33. Ye, Y.; Guo, J.; Wang, A.; et al. Starfish tube feet inspired hydrogel electrode for durable underwater sEMG acquisition. Chem. Eng. J. 2024, 496, 153882.
34. Sun, Y.; Xiao, M.; Tang, Z.; et al. Preparation of active on-demand antibacterial hydrogel epidermis electrodes based on flora balance strategy for intelligent prostheses. ACS. Appl. Mater. Interfaces. 2025, 17, 37231-42.
35. Wang, W.; Chen, F.; Fang, L.; Li, Z.; Xie, Z. Reversibly stretchable organohydrogel-based soft electronics with robust and redox-active interfaces enabled by polyphenol-incorporated double networks. ACS. Appl. Mater. Interfaces. 2022, 14, 12583-95.
36. Cai, P.; Wan, C.; Pan, L.; et al. Locally coupled electromechanical interfaces based on cytoadhesion-inspired hybrids to identify muscular excitation-contraction signatures. Nat. Commun. 2020, 11, 2183.
37. Park, S. Y.; Choi, S. J.; Kim, J. C.; Joe, D. J.; Lee, H. E. Self-healable and conductive hydrogel nanocomposite with high environmental stability for electromagnetic-interference-free electrocardiography patches. Energy. Environ. Mater. , e70039.
38. Wang, D.; Xue, H.; Xia, L.; et al. A tough semi-dry hydrogel electrode with anti-bacterial properties for long-term repeatable non-invasive EEG acquisition. Microsyst. Nanoeng. 2025, 11, 105.
39. Guo, J.; Zhang, T.; Hao, X.; et al. Aramid nanofiber/MXene-reinforced polyelectrolyte hydrogels for absorption-dominated electromagnetic interference shielding and wearable sensing. Nanomicro. Lett. 2025, 17, 271.
40. Li, X.; Jiang, M.; Du, Y.; et al. Self-healing liquid metal hydrogel for human-computer interaction and infrared camouflage. Mater. Horiz. 2023, 10, 2945-57.