REFERENCES

1. Lee, Y.; Song, W.; Sun, J. Hydrogel soft robotics. Mater. Today. Phys. 2020, 15, 100258.

2. Cheng, Y.; Chan, K. H.; Wang, X. Q.; et al. Direct-ink-write 3D printing of hydrogels into biomimetic soft robots. ACS. Nano. 2019, 13, 13176-84.

3. Jiang, J.; Xu, S.; Ma, H.; Li, C.; Huang, Z. Photoresponsive hydrogel-based soft robot: a review. Mater. Today. Bio. 2023, 20, 100657.

4. Chen, C. R.; Qin, H.; Cong, H. P.; Yu, S. H. A highly stretchable and real-time healable supercapacitor. Adv. Mater. 2019, 31, e1900573.

5. Qin, H.; Liu, P.; Chen, C.; Cong, H. P.; Yu, S. H. A multi-responsive healable supercapacitor. Nat. Commun. 2021, 12, 4297.

6. Herrmann, A.; Haag, R.; Schedler, U. Hydrogels and their role in biosensing applications. Adv. Healthc. Mater. 2021, 10, e2100062.

7. Ko, S.; Chhetry, A.; Kim, D.; Yoon, H.; Park, J. Y. Hysteresis-free double-network hydrogel-based strain sensor for wearable smart bioelectronics. ACS. Appl. Mater. Interfaces. 2022, 14, 31363-72.

8. Pham, T. T.; Tran, P. L.; Phung, C. D.; et al. Surface-triggered in situ gelation for tunable conformal hydrogel coating of therapeutic cells and biomedical devices. Adv. Funct. Mater. 2021, 31, 2010169.

9. Barrett-Catton, E.; Ross, M. L.; Asuri, P. Multifunctional hydrogel nanocomposites for biomedical applications. Polymers 2021, 13, 856.

10. Kulbay, M.; Wu, K. Y.; Truong, D.; Tran, S. D. Smart molecules in ophthalmology: hydrogels as responsive systems for ophthalmic applications. Smart. Mol. 2024, 2, e20230021.

11. Tang, L.; Wang, L.; Yang, X.; Feng, Y.; Li, Y.; Feng, W. Poly(N-isopropylacrylamide)-based smart hydrogels: design, properties and applications. Prog. Mater. Sci. 2021, 115, 100702.

12. Xiang, S.; Su, Y.; Yin, H.; Li, C.; Zhu, M. Visible-light-driven isotropic hydrogels as anisotropic underwater actuators. Nano. Energy. 2021, 85, 105965.

13. Le, X.; Lu, W.; Zhang, J.; Chen, T. Recent progress in biomimetic anisotropic hydrogel actuators. Adv. Sci. 2019, 6, 1801584.

14. Li, W.; Guan, Q.; Li, M.; Saiz, E.; Hou, X. Nature-inspired strategies for the synthesis of hydrogel actuators and their applications. Prog. in. Polym. Sci. 2023, 140, 101665.

15. Kuang, X.; Arıcan, M. O.; Zhou, T.; Zhao, X.; Zhang, Y. S. Functional tough hydrogels: design, processing, and biomedical applications. Acc. Mater. Res. 2023, 4, 101-14.

16. Son, H.; Yoon, C. Advances in stimuli-responsive soft robots with integrated hybrid materials. Actuators 2020, 9, 115.

17. Liu, J.; Jiang, L.; He, S.; Zhang, J.; Shao, W. Recent progress in PNIPAM-based multi-responsive actuators: a mini-review. Chem. Eng. J. 2022, 433, 133496.

18. Nonoyama, T.; Gong, J. P. Tough double network hydrogel and its biomedical applications. Annu. Rev. Chem. Biomol. Eng. 2021, 12, 393-410.

19. Yang, F.; Ren, B.; Cai, Y.; et al. Mechanically tough and recoverable hydrogels via dual physical crosslinkings. J. Polym. Sci. B. Polym. Phys. 2018, 56, 1294-305.

20. Zhao, Z.; Li, Y.; Wang, H.; et al. Ultra-tough self-healing hydrogel via hierarchical energy associative dissipation. Adv. Sci. 2023, 10, e2303315.

21. Huang, Y.; Xiao, L.; Zhou, J.; et al. Strong tough polyampholyte hydrogels via the synergistic effect of ionic and metal–ligand bonds. Adv. Funct. Mater. 2021, 31, 2103917.

22. Dai, C. F.; Zhang, X. N.; Du, C.; et al. Photoregulated gradient structure and programmable mechanical performances of tough hydrogels with a hydrogen-bond network. ACS. Appl. Mater. Interfaces. 2020, 12, 53376-84.

23. Huang, G.; Tang, Z.; Peng, S.; et al. Modification of hydrophobic hydrogels into a strongly adhesive and tough hydrogel by electrostatic interaction. Macromolecules 2022, 55, 156-65.

24. Chen, N.; He, X.; Lu, Q. Highly stretchable, repairable, and tough nanocomposite hydrogel physically cross-linked by hydrophobic interactions and reinforced by surface-grafted hydrophobized cellulose nanocrystals. Macromol. Rapid. Commun. 2023, 44, e2300053.

25. Yang, B.; Wei, Z.; Chen, X.; Wei, K.; Bian, L. Manipulating the mechanical properties of biomimetic hydrogels with multivalent host-guest interactions. J. Mater. Chem. B. 2019, 7, 1726-33.

26. Fu, R.; Guan, Y.; Xiao, C.; et al. Tough and highly efficient underwater self-repairing hydrogels for soft electronics. Small. Methods. 2022, 6, e2101513.

27. Zhu, J.; Guan, S.; Hu, Q.; Gao, G.; Xu, K.; Wang, P. Tough and pH-sensitive hydroxypropyl guar gum/polyacrylamide hybrid double-network hydrogel. Chem. Eng. J. 2016, 306, 953-60.

28. Han, J.; Park, J.; Bhatta, R.; et al. A double crosslinking adhesion mechanism for developing tough hydrogel adhesives. Acta. Biomater. 2022, 150, 199-210.

29. Su, J.; Zhang, L.; Wan, C.; et al. Dual-network self-healing hydrogels composed of graphene oxide@nanocellulose and poly(AAm-co-AAc). Carbohydr. Polym. 2022, 296, 119905.

30. Ning, X.; Huang, J.; A, Y.; Yuan, N.; Chen, C.; Lin, D. Research advances in mechanical properties and applications of dual network hydrogels. Int. J. Mol. Sci. 2022, 23, 15757.

31. Jiang, L.; Liu, C.; Mayumi, K.; Kato, K.; Yokoyama, H.; Ito, K. Highly stretchable and instantly recoverable slide-ring gels consisting of enzymatically synthesized polyrotaxane with low host coverage. Chem. Mater. 2018, 30, 5013-9.

32. Qin, H.; Zhang, T.; Li, N.; Cong, H. P.; Yu, S. H. Anisotropic and self-healing hydrogels with multi-responsive actuating capability. Nat. Commun. 2019, 10, 2202.

33. Yu, X.; Zheng, Y.; Zhang, H.; Wang, Y.; Fan, X.; Liu, T. Fast-recoverable, self-healable, and adhesive nanocomposite hydrogel consisting of hybrid nanoparticles for ultrasensitive strain and pressure sensing. Chem. Mater. 2021, 33, 6146-57.

34. Lei, K.; Chen, M.; Wang, X.; et al. Highly stretchable, self-healing elastomer hydrogel with universal adhesion driven by reversible cross-links and protein enhancement. J. Mater. Chem. B. 2022, 10, 9188-201.

35. Cui, H.; Zhao, Q.; Zhang, L.; Du, X. Intelligent polymer-based bioinspired actuators: from monofunction to multifunction. Adv. Intell. Syst. 2020, 2, 2000138.

36. Zheng, Q.; Xu, C.; Jiang, Z.; Zhu, M.; Chen, C.; Fu, F. Smart actuators based on external stimulus response. Front. Chem. 2021, 9, 650358.

37. Dong, Y.; Ramey-Ward, A. N.; Salaita, K. Programmable mechanically active hydrogel-based materials. Adv. Mater. 2021, 33, e2006600.

38. Han, I. K.; Chung, T.; Han, J.; Kim, Y. S. Nanocomposite hydrogel actuators hybridized with various dimensional nanomaterials for stimuli responsiveness enhancement. Nano. Converg. 2019, 6, 18.

39. He, Y.; Tang, J.; Hu, Y.; et al. Magnetic hydrogel-based flexible actuators: a comprehensive review on design, properties, and applications. Chem. Eng. J. 2023, 462, 142193.

40. Yan, Q.; Ding, R.; Zheng, H.; et al. Bio-inspired stimuli-responsive Ti3C2Tx/PNIPAM anisotropic hydrogels for high-performance actuators. Adv. Funct. Mater. 2023, 33, 2301982.

41. Liu, H.; Jia, X.; Liu, R.; et al. Multifunctional gradient hydrogel with ultrafast thermo-responsive actuation and ultrahigh conductivity. J. Mater. Chem. A. 2022, 10, 21874-83.

42. Li, M.; Zhu, F.; Ge, Y.; et al. Vulcanized layered double hydroxide nanosheet composite hydrogels as efficient near-infrared light-fueled soft actuators. ACS. Mater. Lett. 2023, 5, 1841-50.

43. Xue, P.; Valenzuela, C.; Ma, S.; et al. Highly conductive MXene/PEDOT:PSS-integrated poly(N-isopropylacrylamide) hydrogels for bioinspired somatosensory soft actuators. Adv. Funct. Mater. 2023, 33, 2214867.

44. Zuo, X.; Wang, S.; Zhou, Y.; et al. Fluorescent hydrogel actuators with simultaneous morphing- and color/brightness-changes enabled by light-activated 3D printing. Chem. Eng. J. 2022, 447, 137492.

45. Cui, X.; Liu, Z.; Zhang, B.; et al. Sponge-like, semi-interpenetrating self-sensory hydrogel for smart photothermal-responsive soft actuator with biomimetic self-diagnostic intelligence. Chem. Eng. J. 2023, 467, 143515.

46. Ma, Y.; Ma, S.; Yang, W.; et al. Sundew-inspired simultaneous actuation and adhesion/friction control for reversibly capturing objects underwater. Adv. Mater. Technol. 2019, 4, 1800467.

47. Haq, M. A.; Su, Y.; Wang, D. Mechanical properties of PNIPAM based hydrogels: a review. Mater. Sci. Eng. C. Mater. Biol. Appl. 2017, 70, 842-55.

48. Li, J. Y.; Feng, Y. H.; He, Y. T.; et al. Thermosensitive hydrogel microneedles for controlled transdermal drug delivery. Acta. Biomater. 2022, 153, 308-19.

49. Jin, Y.; Yang, T.; Ju, S.; Zhang, H.; Choi, T. Y.; Neogi, A. Thermally tunable dynamic and static elastic properties of hydrogel due to volumetric phase transition. Polymers 2020, 12, 1462.

50. Jiang, S.; Xia, L.; Ma, H.; Yang, T.; Qian, L. pH and temperature dual-responsive hydrogel actuator with bidirectional bending behavior and ultra large bending angle. Eur. Polym. J. 2023, 197, 112296.

51. Li, H.; Hai, N.; Wu, X.; Yuan, Z.; Chen, X.; Zhang, J. Thermo-hardening hydrogel actuators as self-locking grippers. Sci. China. Mater. 2024, 67, 2115-22.

52. Ni, C.; Chen, D.; Wen, X.; et al. High speed underwater hydrogel robots with programmable motions powered by light. Nat. Commun. 2023, 14, 7672.

53. Kong, X.; Li, Y.; Xu, W.; et al. Drosera-inspired dual-actuating double-layer hydrogel actuator. Macromol. Rapid. Commun. 2021, 42, e2100416.

54. Higgins, W.; Kozlovskaya, V.; Alford, A.; Ankner, J.; Kharlampieva, E. Stratified temperature-responsive multilayer hydrogels of poly(N-vinylpyrrolidone) and poly(N-vinylcaprolactam): effect of hydrogel architecture on properties. Macromolecules 2016, 49, 6953-64.

55. Le, M.; Huang, W.; Chen, K.; et al. Upper critical solution temperature polymeric drug carriers. Chem. Eng. J. 2022, 432, 134354.

56. Hua, L.; Xie, M.; Jian, Y.; Wu, B.; Chen, C.; Zhao, C. Multiple-responsive and amphibious hydrogel actuator based on asymmetric UCST-type volume phase transition. ACS. Appl. Mater. Interfaces. 2019, 11, 43641-8.

57. Li, J.; Ma, Q.; Xu, Y.; et al. Highly bidirectional bendable actuator engineered by LCST-UCST bilayer hydrogel with enhanced interface. ACS. Appl. Mater. Interfaces. 2020, 12, 55290-8.

58. Li, L.; Scheiger, J. M.; Levkin, P. A. Design and applications of photoresponsive hydrogels. Adv. Mater. 2019, 31, e1807333.

59. Yang, S.; Yang, Y.; Xia, X.; Zou, B.; Wang, B.; Zhang, Y. Biomimetic stimulus responsiveness: from materials design to device integration. Adv. Funct. Mater. 2024, 34, 2400500.

60. Guo, K.; Yang, X.; Zhou, C.; Li, C. Self-regulated reversal deformation and locomotion of structurally homogenous hydrogels subjected to constant light illumination. Nat. Commun. 2024, 15, 1694.

61. Zhu, C. N.; Li, C. Y.; Wang, H.; et al. Reconstructable gradient structures and reprogrammable 3D deformations of hydrogels with coumarin units as the photolabile crosslinks. Adv. Mater. 2021, 33, e2008057.

62. Kumar, A.; Rajamanickam, R.; Hazra, J.; Mahapatra, N. R.; Ghosh, P. Engineering the nonmorphing point of actuation for controlled drug release by hydrogel bilayer across the pH spectrum. ACS. Appl. Mater. Interfaces. 2022, 14, 56321-30.

63. Chen, H.; Tan, W.; Tong, T.; Shi, X.; Ma, S.; Zhu, G. A pH-responsive asymmetric microfluidic/chitosan device for drug release in infective bone defect treatment. Int. J. Mol. Sci. 2023, 24, 4616.

64. Su, L.; Jin, D.; Wang, Y.; et al. Modularized microrobot with lock-and-detachable modules for targeted cell delivery in bile duct. Sci. Adv. 2023, 9, eadj0883.

65. Han, Z.; Wang, P.; Mao, G.; et al. Dual pH-responsive hydrogel actuator for lipophilic drug delivery. ACS. Appl. Mater. Interfaces. 2020, 12, 12010-7.

66. Benny Mattam, L.; Bijoy, A.; Abraham Thadathil, D.; George, L.; Varghese, A. Conducting polymers: a versatile material for biomedical applications. ChemistrySelect 2022, 7, e202201765.

67. Milani, G. M.; Coutinho, I. T.; Ambrosio, F. N.; et al. Poly(acrylic acid)/polypyrrole interpenetrated network as electro-responsive hydrogel for biomedical applications. J. Appl. Polym. Sci. 2022, 139, 52091.

68. Liu, D.; Zhou, H.; Zhao, Y.; et al. A strand entangled supramolecular PANI/PAA hydrogel enabled ultra-stretchable strain sensor. Small 2022, 18, e2203258.

69. Liu, S.; Gao, G.; Xiao, Y.; Fu, J. Tough and responsive oppositely charged nanocomposite hydrogels for use as bilayer actuators assembled through interfacial electrostatic attraction. J. Mater. Chem. B. 2016, 4, 3239-46.

70. Na, H.; Kang, Y. W.; Park, C. S.; Jung, S.; Kim, H. Y.; Sun, J. Y. Hydrogel-based strong and fast actuators by electroosmotic turgor pressure. Science 2022, 376, 301-7.

71. Danmatam, N.; Nakburee, W.; Pearce, J.; Pattavarakorn, D. Smart carboxymethyl cellulose/polythiophene hydrogel for electrically driven soft actuators: Physical and thermal properties and electroactive performances. J. Appl. Polym. Sci. 2022, 139, e52904.

72. Pu, W.; Wei, F.; Yao, L.; Xie, S. A review of humidity-driven actuator: toward high response speed and practical applications. J. Mater. Sci. 2022, 57, 12202-35.

73. Lv, C.; Xia, H.; Shi, Q.; et al. Sensitively humidity-driven actuator based on photopolymerizable PEG-DA films. Adv. Mater. Interfaces. 2017, 4, 1601002.

74. Li, J.; Chee, H. L.; Chong, Y. T.; et al. Hofmeister effect mediated strong PHEMA-gelatin hydrogel actuator. ACS. Appl. Mater. Interfaces. 2022, 14, 23826-38.

75. Wang, M.; Zhou, L.; Deng, W.; et al. Ultrafast response and programmable locomotion of liquid/vapor/light-driven soft multifunctional actuators. ACS. Nano. 2022, 16, 2672-81.

76. Pirahmadi, P.; Kokabi, M.; Alamdarnejad, G. Polyvinyl alcohol/chitosan/carbon nanotubes electroactive shape memory nanocomposite hydrogels. J. Appl. Polym. Sci. 2021, 138, 49995.

77. Lee, S.; Kim, M.; Choi, J.; Kim, S. Double-crosslinked reduced graphene oxide-based hydrogel actuator system with fast electro-responsive deformation and enhanced mechanical properties. Mater. Today. Chem. 2023, 29, 101434.

78. Yu, X.; Cheng, H.; Zhang, M.; Zhao, Y.; Qu, L.; Shi, G. Graphene-based smart materials. Nat. Rev. Mater. 2017, 2, 17046.

79. Anichini, C.; Samorì, P. Graphene-based hybrid functional materials. Small 2021, 17, e2100514.

80. Ioniţă, M.; Vlăsceanu, G. M.; Watzlawek, A. A.; Voicu, S. I.; Burns, J. S.; Iovu, H. Graphene and functionalized graphene: extraordinary prospects for nanobiocomposite materials. Compos. Part. B. Eng. 2017, 121, 34-57.

81. Yang, C.; Liu, Z.; Chen, C.; et al. Reduced graphene oxide-containing smart hydrogels with excellent electro-response and mechanical properties for soft actuators. ACS. Appl. Mater. Interfaces. 2017, 9, 15758-67.

82. Duan, J.; Liu, F.; Kong, Y.; et al. Homogeneous chitosan/graphene oxide nanocomposite hydrogel-based actuator driven by efficient photothermally induced water gradients. ACS. Appl. Nano. Mater. 2020, 3, 1002-9.

83. Zhao, Q.; Liang, Y.; Ren, L.; Yu, Z.; Zhang, Z.; Ren, L. Bionic intelligent hydrogel actuators with multimodal deformation and locomotion. Nano. Energy. 2018, 51, 621-31.

84. Song, P.; Qin, H.; Gao, H. L.; Cong, H. P.; Yu, S. H. Self-healing and superstretchable conductors from hierarchical nanowire assemblies. Nat. Commun. 2018, 9, 2786.

85. Zhang, H.; Zeng, H.; Eklund, A.; Guo, H.; Priimagi, A.; Ikkala, O. Feedback-controlled hydrogels with homeostatic oscillations and dissipative signal transduction. Nat. Nanotechnol. 2022, 17, 1303-10.

86. Han, B.; Gao, Y.; Zhang, Y.; et al. Multi-field-coupling energy conversion for flexible manipulation of graphene-based soft robots. Nano. Energy. 2020, 71, 104578.

87. Liu, J.; Miao, J.; Zhang, Z.; Liu, Z.; Yu, Y. Programmable shape deformation actuated bilayer hydrogel based on mixed metal ions. Eur. Polym. J. 2022, 175, 111375.

88. Lu, H.; Wu, B.; Yang, X.; et al. Actuating supramolecular shape memorized hydrogel toward programmable shape deformation. Small 2020, 16, e2005461.

89. Zhang, Y.; An, R.; Han, L.; Wang, X.; Shi, L.; Ran, R. Novel self-healing, shape-memory, tunable double-layer actuators based on semi-IPN and physical double-network hydrogels. Macro. Mater. Eng. 2018, 303, 1800505.

90. Wei, S.; Lu, W.; Le, X.; et al. Bioinspired synergistic fluorescence-color-switchable polymeric hydrogel actuators. Angew. Chem. Int. Ed. Engl. 2019, 58, 16243-51.

91. Kim, Y. S.; Liu, M.; Ishida, Y.; et al. Thermoresponsive actuation enabled by permittivity switching in an electrostatically anisotropic hydrogel. Nat. Mater. 2015, 14, 1002-7.

92. Li, M.; Wang, X.; Dong, B.; Sitti, M. In-air fast response and high speed jumping and rolling of a light-driven hydrogel actuator. Nat. Commun. 2020, 11, 3988.

93. Yao, X.; Chen, H.; Qin, H.; Wu, Q. H.; Cong, H. P.; Yu, S. H. Solvent-adaptive hydrogels with lamellar confinement cellular structure for programmable multimodal locomotion. Nat. Commun. 2024, 15, 9254.

94. Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater. 2014, 26, 992-1005.

95. Liao, H.; Guo, X.; Wan, P.; Yu, G. Conductive MXene nanocomposite organohydrogel for flexible, healable, low-temperature tolerant strain sensors. Adv. Funct. Mater. 2019, 29, 1904507.

96. Zhang, Y. Z.; Lee, K. H.; Anjum, D. H.; et al. MXenes stretch hydrogel sensor performance to new limits. Sci. Adv. 2018, 4, eaat0098.

97. Li, X.; He, L.; Li, Y.; et al. Healable, degradable, and conductive MXene nanocomposite hydrogel for multifunctional epidermal sensors. ACS. Nano. 2021, 15, 7765-73.

98. Chae, A.; Murali, G.; Lee, S.; et al. Highly oxidation-resistant and self-healable MXene-based hydrogels for wearable strain sensor. Adv. Funct. Mater. 2023, 33, 2213382.

99. Rafieerad, A.; Sequiera, G. L.; Yan, W.; Kaur, P.; Amiri, A.; Dhingra, S. Sweet-MXene hydrogel with mixed-dimensional components for biomedical applications. J. Mech. Behav. Biomed. Mater. 2020, 101, 103440.

100. Tao, N.; Zhang, D.; Li, X.; et al. Near-infrared light-responsive hydrogels via peroxide-decorated MXene-initiated polymerization. Chem. Sci. 2019, 10, 10765-71.

101. Zhang, P.; Yang, X. J.; Li, P.; Zhao, Y.; Niu, Q. J. Fabrication of novel MXene (Ti3C2)/polyacrylamide nanocomposite hydrogels with enhanced mechanical and drug release properties. Soft. Matter. 2020, 16, 162-9.

102. Li, Y.; Tian, Z.; Li, C.; Li, Z.; Yu, Z.; Yang, D. Bionic light-responsive hydrogel actuators with multiple-freedom motions in water environments. Nano. Energy. 2024, 130, 110130.

103. Shang, M.; Ma, S.; Ma, J.; Guo, L.; Liu, C.; Xu, X. Somatosensory actuators based on light-responsive anisotropic hydrogel for storage encryption of information systems. Chem. Eng. J. 2024, 496, 153895.

104. Yang, L.; Cui, J.; Zhang, L.; Xu, X.; Chen, X.; Sun, D. A moisture-driven actuator based on polydopamine-modified MXene/bacterial cellulose nanofiber composite film. Adv. Funct. Mater. 2021, 31, 2101378.

105. Zhang, W.; Jin, K.; Ren, Z.; et al. High-performance MXene/carbon nanotube electrochemical actuators for biomimetic soft robotic applications. Adv. Funct. Mater. 2024, 34, 2408496.

106. Ma, S.; Xue, P.; Valenzuela, C.; et al. Highly stretchable and conductive MXene-encapsulated liquid metal hydrogels for bioinspired self-sensing soft actuators. Adv. Funct. Mater. 2024, 34, 2309899.

107. Chen, L.; Wei, X.; Sun, Y.; et al. A bamboo/PNIPAM composite hydrogel assembly for both programmable and remotely-controlled light-responsive biomimetic actuations. Chem. Eng. J. 2022, 446, 137072.

108. Luo, R.; Wu, J.; Dinh, N.; Chen, C. Gradient porous elastic hydrogels with shape-memory property and anisotropic responses for programmable locomotion. Adv. Funct. Mater. 2015, 25, 7272-9.

109. Depa, K.; Strachota, A.; Šlouf, M.; Brus, J.; Cimrová, V. Synthesis of conductive doubly filled poly(N-isopropylacrylamide)-polyaniline-SiO2 hydrogels. Sens. Actuators. B. Chem. 2017, 244, 616-34.

110. Li, Y.; Liu, L.; Xu, H.; Cheng, Z.; Yan, J.; Xie, X. M. Biomimetic gradient hydrogel actuators with ultrafast thermo-responsiveness and high strength. ACS. Appl. Mater. Interfaces. 2022, 14, 32541-50.

111. Wang, S.; Yu, L.; Wang, S.; et al. Strong, tough, ionic conductive, and freezing-tolerant all-natural hydrogel enabled by cellulose-bentonite coordination interactions. Nat. Commun. 2022, 13, 3408.

112. Gevorkian, A.; Morozova, S. M.; Kheiri, S.; et al. Actuation of three-dimensional-printed nanocolloidal hydrogel with structural anisotropy. Adv. Funct. Mater. 2021, 31, 2010743.

113. Yang, B.; Zhang, S.; Wang, P.; Liu, C.; Zhu, Y. Robust and rapid responsive organic-inorganic hybrid bilayer hydrogel actuators with silicon nanoparticles as the cross-linker. Polymer 2021, 228, 123863.

114. Duan, S.; Hua, M.; Zhang, C. W.; et al. Noncovalent aggregation for diverse properties in hydrogels: a comprehensive review. Chem. Rev. 2025.

115. Ge, G.; Zhang, Y. Z.; Zhang, W.; et al. Ti3C2Tx MXene-activated fast gelation of stretchable and self-healing hydrogels: a molecular approach. ACS. Nano. 2021, 15, 2698-706.

116. Xu, C.; Yu, X.; Liu, Y.; Zhang, X.; Liu, S. Versatile graphene oxide hybrid supramolecular hydrogel driven by host–guest interaction showing excellent mechanical and sensing properties and photothermal responsiveness. ACS. Appl. Polym. Mater. 2023, 5, 7375-89.

117. Cheng, F. M.; Chen, H. X.; Li, H. D. Recent progress on hydrogel actuators. J. Mater. Chem. B. 2021, 9, 1762-80.

118. Han, Z.; Zhang, J. Rapid-responsive hydrogel actuators with hierarchical structures: strategies and applications. ACS. Appl. Polym. Mater. 2023, 5, 4605-20.

119. Liu, H.; Liu, R.; Chen, K.; et al. Bioinspired gradient structured soft actuators: from fabrication to application. Chem. Eng. J. 2023, 461, 141966.

120. Yao, X.; Chen, H.; Qin, H.; Cong, H. P. Nanocomposite hydrogel actuators with ordered structures: from nanoscale control to macroscale deformations. Small. Methods. 2024, 8, e2300414.

121. Fan, W.; Shan, C.; Guo, H.; et al. Dual-gradient enabled ultrafast biomimetic snapping of hydrogel materials. Sci. Adv. 2019, 5, eaav7174.

122. Ying, Z.; Wang, Q.; Xie, J.; Li, B.; Lin, X.; Hui, S. Novel electrically-conductive electro-responsive hydrogels for smart actuators with a carbon-nanotube-enriched three-dimensional conductive network and a physical-phase-type three-dimensional interpenetrating network. J. Mater. Chem. C. 2020, 8, 4192-205.

123. Gregg, A.; De Volder, M. F. L.; Baumberg, J. J. Light-actuated anisotropic microactuators from CNT/hydrogel nanocomposites. Adv. Opt. Mater. 2022, 10, 2200180.

124. Chen, W.; Zhang, Z.; Kouwer, P. H. J. Magnetically driven hierarchical alignment in biomimetic fibrous hydrogels. Small 2022, 18, e2203033.

125. Yu, X.; Cheng, Y.; Zhang, H.; et al. Dorsoventral gradient hydrogel fiber actuators visualized by AIEgen-conjugated nanoparticles. Nano. Today. 2022, 44, 101502.

126. Zheng, Y.; Huang, H.; Yu, J.; Hu, Z.; Wang, Y. Highly stretchable and strong poly (vinyl alcohol)-based hydrogel for reprogrammable actuator applications. Chem. Eng. J. 2023, 454, 140054.

127. Xu, G.; Ding, Z.; Lu, Q.; et al. Electric field-driven building blocks for introducing multiple gradients to hydrogels. Protein. Cell. 2020, 11, 267-85.

128. Zhu, Q. L.; Dai, C. F.; Wagner, D.; et al. Distributed electric field induces orientations of nanosheets to prepare hydrogels with elaborate ordered structures and programmed deformations. Adv. Mater. 2020, 32, e2005567.

129. Zhai, Y.; Gong, C.; Chen, J.; Chang, C. Magnetic-field induced asymmetric hydrogel fibers for tough actuators with programmable deformation. Chem. Eng. J. 2023, 477, 147088.

130. Odent, J.; Vanderstappen, S.; Toncheva, A.; et al. Hierarchical chemomechanical encoding of multi-responsive hydrogel actuators via 3D printing. J. Mater. Chem. A. 2019, 7, 15395-403.

131. Chen, Z.; Chen, Y.; Chen, C.; Zheng, X.; Li, H.; Liu, H. Dual-gradient PNIPAM-based hydrogel capable of rapid response and tunable actuation. Chem. Eng. J. 2021, 424, 130562.

132. Yang, Y.; Tan, Y.; Wang, X.; et al. Photothermal nanocomposite hydrogel actuator with electric-field-induced gradient and oriented structure. ACS. Appl. Mater. Interfaces. 2018, 10, 7688-92.

133. Zhu, Q. L.; Dai, C. F.; Wagner, D.; et al. Patterned electrode assisted one-step fabrication of biomimetic morphing hydrogels with sophisticated anisotropic structures. Adv. Sci. 2021, 8, e2102353.

134. Xue, P.; Bisoyi, H. K.; Chen, Y.; et al. Near-infrared light-driven shape-morphing of programmable anisotropic hydrogels enabled by MXene nanosheets. Angew. Chem. Int. Ed. Engl. 2021, 60, 3390-6.

135. He, Z.; Zhou, Z.; Yuan, W. Highly adhesive, stretchable, and antifreezing hydrogel with excellent mechanical properties for sensitive motion sensors and temperature-/humidity-driven actuators. ACS. Appl. Mater. Interfaces. 2022, 14, 38205-15.

136. Lin, J.; Han, Y.; Cui, Y.; Zhao, W.; Chang, C. Ionic coordination strengthening of temperature-driven gradient hydrogel actuators with rapid responsiveness. Compos. Part. B. Eng. 2022, 245, 110210.

137. Bi, Y.; Du, X.; He, P.; Wang, C.; Liu, C.; Guo, W. Smart bilayer polyacrylamide/DNA hybrid hydrogel film actuators exhibiting programmable responsive and reversible macroscopic shape deformations. Small 2020, 16, e1906998.

138. Abdolahi, J.; Baghani, M.; Arbabi, N.; Mazaheri, H. Finite bending of a temperature-sensitive hydrogel tri-layer: an analytical and finite element analysis. Compos. Struct. 2017, 164, 219-28.

139. Chen, T.; Bakhshi, H.; Liu, L.; Ji, J.; Agarwal, S. Combining 3D printing with electrospinning for rapid response and enhanced designability of hydrogel actuators. Adv. Funct. Mater. 2018, 28, 1800514.

140. Gregg, A.; De, Volder. M.; Baumberg, J. J. Kinetics of light-responsive CNT/PNIPAM hydrogel microactuators. Small 2024, 20, e2305034.

141. Ma, C.; Li, T.; Zhao, Q.; et al. Supramolecular Lego assembly towards three-dimensional multi-responsive hydrogels. Adv. Mater. 2014, 26, 5665-9.

142. Cheng, Y.; Ren, K.; Huang, C.; Wei, J. Self-healing graphene oxide-based nanocomposite hydrogels serve as near-infrared light-driven valves. Sens. Actuators. B. Chem. 2019, 298, 126908.

143. Wei, X.; Wu, Q.; Chen, L.; et al. Remotely controlled light/electric/magnetic multiresponsive hydrogel for fast actuations. ACS. Appl. Mater. Interfaces. 2023, 15, 10030-43.

144. Sun, Z.; Song, C.; Zhou, J.; et al. Rapid photothermal responsive conductive MXene nanocomposite hydrogels for soft manipulators and sensitive strain sensors. Macromol. Rapid. Commun. 2021, 42, e2100499.

145. Wang, R.; Zhang, Y.; Lu, W.; et al. Bio-inspired structure-editing fluorescent hydrogel actuators for environment-interactive information encryption. Angew. Chem. Int. Ed. Engl. 2023, 62, e202300417.

146. Zhang, X.; Xue, P.; Yang, X.; et al. Near-infrared light-driven shape-programmable hydrogel actuators loaded with metal-organic frameworks. ACS. Appl. Mater. Interfaces. 2022, 14, 11834-41.

147. Li, M.; Bae, J. Programmable dual-responsive actuation of single-hydrogel-based bilayer actuators by photothermal and skin layer effects with graphene oxides. Adv. Mater. Interfaces. 2023, 10, 2300169.

148. Peng, X.; Liu, T.; Zhang, Q.; Shang, C.; Bai, Q.; Wang, H. Surface patterning of hydrogels for programmable and complex shape deformations by ion inkjet printing. Adv. Funct. Mater. 2017, 27, 1701962.

149. Basu, A.; Saha, A.; Goodman, C.; Shafranek, R. T.; Nelson, A. Catalytically initiated gel-in-gel printing of composite hydrogels. ACS. Appl. Mater. Interfaces. 2017, 9, 40898-904.

150. Zhang, M.; Pal, A.; Zheng, Z.; Gardi, G.; Yildiz, E.; Sitti, M. Hydrogel muscles powering reconfigurable micro-metastructures with wide-spectrum programmability. Nat. Mater. 2023, 22, 1243-52.

151. Qin, J.; Feng, P.; Wang, Y.; Du, X.; Song, B. Nanofibrous actuator with an alignment gradient for millisecond-responsive, multidirectional, multimodal, and multidimensional large deformation. ACS. Appl. Mater. Interfaces. 2020, 12, 46719-32.

152. Zhou, M. X.; Jin, F.; Wang, J. Y.; Dong, X. Z.; Liu, J.; Zheng, M. L. Dynamic color-switching of hydrogel micropillar array under ethanol vapor for optical encryption. Small 2023, 19, e2304384.

153. Wang, R.; Yuan, C.; Cheng, J.; et al. Direct 4D printing of ceramics driven by hydrogel dehydration. Nat. Commun. 2024, 15, 758.

154. Gladman, A. S.; Matsumoto, E. A.; Nuzzo, R. G.; Mahadevan, L.; Lewis, J. A. Biomimetic 4D printing. Nat. Mater. 2016, 15, 413-8.

155. Li, M.; Yuan, L.; Liu, Y.; et al. Bioinspired light-driven photonic crystal actuator with MXene-hydrogel muscle. Cell. Rep. Phys. Sci. 2022, 3, 100915.

156. Liu, H.; Du, C.; Liao, L.; et al. Approaching intrinsic dynamics of MXenes hybrid hydrogel for 3D printed multimodal intelligent devices with ultrahigh superelasticity and temperature sensitivity. Nat. Commun. 2022, 13, 3420.

157. Li, K.; Zhao, J.; Zhussupbekova, A.; et al. 4D printing of MXene hydrogels for high-efficiency pseudocapacitive energy storage. Nat. Commun. 2022, 13, 6884.

158. Fontana-Escartín, A.; Lanzalaco, S.; Bertran, O.; Aradilla, D.; Alemán, C. Aqueous alginate/MXene inks for 3D printable biomedical devices. Colloids. Surf. A. Physicochem. Eng. Asp. 2023, 671, 131632.

159. Pantula, A.; Datta, B.; Shi, Y.; et al. Untethered unidirectionally crawling gels driven by asymmetry in contact forces. Sci. Robot. 2022, 7, eadd2903.

160. Ma, C.; Le, X.; Tang, X.; et al. A multiresponsive anisotropic hydrogel with macroscopic 3D complex deformations. Adv. Funct. Mater. 2016, 26, 8670-6.

161. Zhang, M.; Lee, Y.; Zheng, Z.; et al. Micro- and nanofabrication of dynamic hydrogels with multichannel information. Nat. Commun. 2023, 14, 8208.

162. Ni, C.; Chen, D.; Yin, Y.; et al. Shape memory polymer with programmable recovery onset. Nature 2023, 622, 748-53.

163. Li, J.; Cao, J.; Bian, R.; et al. Multimaterial cryogenic printing of three-dimensional soft hydrogel machines. Nat. Commun. 2025, 16, 185.

164. Dhand, A. P.; Davidson, M. D.; Burdick, J. A. Lithography-based 3D printing of hydrogels. Nat. Rev. Bioeng. 2025, 3, 108-25.

165. Zhang, A.; Wang, F.; Chen, L.; et al. 3D printing hydrogels for actuators: a review. Chin. Chem. Lett. 2021, 32, 2923-32.

166. Wang, J.; Zhang, M.; Han, S.; Zhu, L.; Jia, X. Multiple-stimuli-responsive multicolor luminescent self-healing hydrogel and application in information encryption and bioinspired camouflage. J. Mater. Chem. C. 2022, 10, 15565-72.

167. Gao, Q.; Pan, P.; Shan, G.; Du, M. Bioinspired stimuli-responsive hydrogel with reversible switching and fluorescence behavior served as light-controlled soft actuators. Macromol. Mater. Eng. 2021, 306, 2100379.

168. Li, S.; Yang, H.; Chen, G.; et al. 4D printing of biomimetic anisotropic self-sensing hydrogel actuators. Chem. Eng. J. 2023, 473, 145444.

169. Xiang, C.; Ning, H.; Hu, N.; et al. A bioinspired smart adhesion actuator with fast-driving and self-sensing capability. Adv. Mater. Technol. 2023, 8, 2201715.

170. Wang, J.; Chen, Y.; Wang, J.; et al. A self-healing artificial muscle was realized by fitting the electrode membrane with the self-healing actuating membrane with a folded structure. Smart. Mater. Struct. 2024, 33, 015029.

171. Yang, C.; Su, F.; Xu, Y.; et al. pH oscillator-driven jellyfish-like hydrogel actuator with dissipative synergy between deformation and fluorescence color change. ACS. Macro. Lett. 2022, 11, 347-53.

172. Xie, J.; Wei, S.; Lu, W.; et al. Environment-interactive programmable deformation of electronically innervated synergistic fluorescence-color/shape changeable hydrogel actuators. Small 2023, 19, e2304204.

173. Chen, N.; Zhou, Y.; Liu, Y.; et al. Conductive photo-thermal responsive bifunctional hydrogel system with self-actuating and self-monitoring abilities. Nano. Res. 2022, 15, 7703-12.

174. Qian, C.; Li, Y.; Chen, C.; et al. A stretchable and conductive design based on multi-responsive hydrogel for self-sensing actuators. Chem. Eng. J. 2023, 454, 140263.

175. Wang, X.; Xue, P.; Ma, S.; Gong, Y.; Xu, X. Polydopamine-modified MXene-integrated poly(N-isopropylacrylamide) to construct ultrafast photoresponsive bilayer hydrogel actuators with smart adhesion. ACS. Appl. Mater. Interfaces. 2023, 15, 49689-700.

176. Feng, X.; Wang, C.; Shang, S.; et al. Multicolor fluorescent cellulose hydrogels actuators: lanthanide-ligand metal coordination, synergetic color-changing and shape-morphing, and antibacterial activity. Chem. Eng. J. 2022, 450, 138356.

177. Lu, Y.; Ma, Y.; Deng, F.; et al. Gradient wood-derived hydrogel actuators constructed by an isotropic-anisotropic structure strategy with rapid thermal-response, high strength and programmable deformation. Chem. Eng. J. 2025, 504, 158903.

178. Du, J.; Ma, Q.; Wang, B.; Sun, L.; Liu, L. Hydrogel fibers for wearable sensors and soft actuators. iScience 2023, 26, 106796.

179. Lo, C.; Zhao, Y.; Kim, C.; et al. Highly stretchable self-sensing actuator based on conductive photothermally-responsive hydrogel. Mater. Today. 2021, 50, 35-43.

180. Shen, Z.; Zhu, X.; Majidi, C.; Gu, G. Cutaneous ionogel mechanoreceptors for soft machines, physiological sensing, and amputee prostheses. Adv. Mater. 2021, 33, e2102069.

181. Xiao, R.; Zhou, X.; Yang, T.; et al. Biomimetic gradient aerogel fibers for sustainable energy harvesting from human sweat via the hydrovoltaic effect. Nano. Energy. 2025, 136, 110759.

182. Hu, L.; Chee, P. L.; Sugiarto, S.; et al. Hydrogel-based flexible electronics. Adv. Mater. 2023, 35, e2205326.

183. Shintake, J.; Cacucciolo, V.; Floreano, D.; Shea, H. Soft robotic grippers. Adv. Mater. 2018, 30, e1707035.

184. Wang, Y.; Liu, D.; Wang, C.; et al. 3D printing of octopi-inspired hydrogel suckers with underwater adaptation for reversible adhesion. Chem. Eng. J. 2023, 457, 141268.

185. Ying, B.; Chen, R. Z.; Zuo, R.; Li, J.; Liu, X. An anti-freezing, ambient-stable and highly stretchable ionic skin with strong surface adhesion for wearable sensing and soft robotics. Adv. Funct. Mater. 2021, 31, 2104665.

186. Li, J.; Sun, X.; He, Z.; Hou, Y.; Wu, H.; Zhu, Y. Biomimetic turing machine: a multiscale theoretical framework for the inverse design of target space curves. J. Mech. Phys. Solids. 2025, 196, 105999.

187. Yang, X.; Zhou, Y.; Zhao, H.; et al. Morphing matter: from mechanical principles to robotic applications. Soft. Sci. 2023, 3, 38.

188. Liu, H.; Chu, H.; Yuan, H.; et al. Bioinspired multifunctional self-sensing actuated gradient hydrogel for soft-hard robot remote interaction. Nanomicro. Lett. 2024, 16, 69.

189. Zhang, Z.; Li, Z.; Yuan, W. Plants inspired shape-programmable and reconfigurable actuation soft actuators for adaptive grasping, sensing and recognition. Small 2025, 21, e2501164.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/