REFERENCES

1. Zhu, M.; Ji, S.; Luo, Y.; et al. A mechanically interlocking strategy based on conductive microbridges for stretchable electronics. Adv. Mater. 2022, 34, e2101339.

2. Liu, Y.; Zheng, M.; O’Connor, B.; Dong, J.; Zhu, Y. Curvilinear soft electronics by micromolding of metal nanowires in capillaries. Sci. Adv. 2022, 8, eadd6996.

3. Yoon, H.; Choi, J.; Kim, J.; et al. Adaptive epidermal bioelectronics by highly breathable and stretchable metal nanowire bioelectrodes on electrospun nanofiber membrane. Adv. Funct. Mater. 2024, 34, 2313504.

4. Xiong, W.; Zhang, F.; Qu, S.; Yin, L.; Li, K.; Huang, Y. Marangoni-driven deterministic formation of softer, hollow microstructures for sensitivity-enhanced tactile system. Nat. Commun. 2024, 15, 5596.

5. Heng, W.; Solomon, S.; Gao, W. Flexible electronics and devices as human-machine interfaces for medical robotics. Adv. Mater. 2022, 34, e2107902.

6. Choi, Y.; Kang, K.; Son, D.; Shin, M. Molecular rationale for the design of instantaneous, strain-tolerant polymeric adhesive in a stretchable underwater human-machine interface. ACS. Nano. 2022, 16, 1368-80.

7. Rahman, M. T.; Rahman, M. S.; Kumar, H.; Kim, K.; Kim, S. Metal-organic framework reinforced highly stretchable and durable conductive hydrogel-based triboelectric nanogenerator for biomotion sensing and wearable human‐machine interfaces. Adv. Funct. Mater. 2023, 33, 2303471.

8. Lu, Y.; Yang, G.; Wang, S.; et al. Stretchable graphene-hydrogel interfaces for wearable and implantable bioelectronics. Nat. Electron. 2024, 7, 51-65.

9. Ershad, F.; Patel, S.; Yu, C. Wearable bioelectronics fabricated in situ on skins. Npj. Flex. Electron. 2023, 7, 32.

10. Bai, Y.; Zhou, Y.; Wu, X.; et al. Flexible strain sensors with ultra-high sensitivity and wide range enabled by crack-modulated electrical pathways. Nanomicro. Lett. 2024, 17, 64.

11. Shin, G.; Choi, Y.; Jeon, B.; Choi, I.; Song, S.; Park, Y. Soft electromagnetic artificial muscles using high-density liquid-metal solenoid coils and bistable stretchable magnetic housings. Adv. Funct. Mater. 2024, 34, 2302895.

12. Ma, S.; Xue, P.; Valenzuela, C.; et al. Highly stretchable and conductive MXene-encapsulated liquid metal hydrogels for bioinspired self-sensing soft actuators. Adv. Funct. Mater. 2024, 34, 2309899.

13. Ren, Z.; Zhang, M.; Song, S.; et al. Soft-robotic ciliated epidermis for reconfigurable coordinated fluid manipulation. Sci. Adv. 2022, 8, eabq2345.

14. Chen, S.; Wang, H.; Zhao, R.; Rao, W.; Liu, J. Liquid metal composites. Matter 2020, 2, 1446-80.

15. Markvicka, E. J.; Bartlett, M. D.; Huang, X.; Majidi, C. An autonomously electrically self-healing liquid metal-elastomer composite for robust soft-matter robotics and electronics. Nat. Mater. 2018, 17, 618-24.

16. Pan, C.; Markvicka, E. J.; Malakooti, M. H.; et al. A liquid-metal-elastomer nanocomposite for stretchable dielectric materials. Adv. Mater. 2019, 31, e1900663.

17. Zang, W.; Wang, Y.; Wu, W.; et al. Superstretchable liquid-metal electrodes for dielectric elastomer transducers and flexible circuits. ACS. Nano. 2024, 18, 1226-36.

18. Tavakoli, M.; Malakooti, M. H.; Paisana, H.; et al. EGaIn-assisted room-temperature sintering of silver nanoparticles for stretchable, inkjet-printed, thin-film electronics. Adv. Mater. 2018, Epub ahead of print.

19. Carneiro M, Majidi C, Tavakoli M. Multi-electrode printed bioelectronic patches for long‐term electrophysiological monitoring. Adv. Funct. Mater. 2022, 32, 2205956.

20. Lopes, P. A.; Santos, B. C.; de, Almeida. A. T.; Tavakoli, M. Reversible polymer-gel transition for ultra-stretchable chip-integrated circuits through self-soldering and self-coating and self-healing. Nat. Commun. 2021, 12, 4666.

21. Guo, R.; Li, T.; Wu, Z.; et al. Thermal transfer-enabled rapid printing of liquid metal circuits on multiple substrates. ACS. Appl. Mater. Interfaces. 2022, 14, 37028-38.

22. Wu, Y.; Deng, Z.; Peng, Z.; et al. A novel strategy for preparing stretchable and reliable biphasic liquid metal. Adv. Funct. Mater. 2019, 29, 1903840.

23. Guo, R.; Sun, X.; Yuan, B.; Wang, H.; Liu, J. Magnetic liquid metal (Fe-EGaIn) based multifunctional electronics for remote self-healing materials, degradable electronics, and thermal transfer printing. Adv. Sci. 2019, 6, 1901478.

24. Ku, H. H.; Wang, P. Y.; Huang, C. W. Remote control: electrochemically driving EGaIn@Fe liquid metal for application of soft robotics. Small 2024, 20, e2405279.

25. Guan, M.; Huang, Z.; Bao, Z.; Ou, Y.; Zou, S.; Liu, G. Gold nanoparticles incorporated liquid metal for wearable sensors and wound healing. Chem. Eng. J. 2025, 508, 161120.

26. Carneiro M, Majidi C, Tavakoli M. Gallium-based liquid-solid biphasic conductors for soft electronics. Adv. Funct. Mater. 2023, 33, 2306453.

27. Hajalilou, A.; Parvini, E.; Morgado, T. A.; et al. Replacing the gallium oxide shell with conductive Ag: toward a printable and recyclable composite for highly stretchable electronics, electromagnetic shielding, and thermal interfaces. ACS. Appl. Mater. Interfaces. 2024, 16, 61157-68.

28. Ma, J.; Krisnadi, F.; Vong, M. H.; Kong, M.; Awartani, O. M.; Dickey, M. D. Shaping a soft future: patterning liquid metals. Adv. Mater. 2023, 35, e2205196.

29. Zhu, J.; Li, J.; Tong, Y.; et al. Recent progress in multifunctional, reconfigurable, integrated liquid metal-based stretchable sensors and standalone systems. Prog. Mater. Sci. 2024, 142, 101228.

30. Kim, M.; Lim, H.; Ko, S. H. Liquid metal patterning and unique properties for next-generation soft electronics. Adv. Sci. 2023, 10, e2205795.

31. Tang, S. Y.; Khoshmanesh, K.; Sivan, V.; et al. Liquid metal enabled pump. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 3304-9.

32. Lin, Z.; Qiu, X.; Cai, Z.; et al. High internal phase emulsions gel ink for direct-ink-writing 3D printing of liquid metal. Nat. Commun. 2024, 15, 4806.

33. Wang, M.; Ma, C.; Uzabakiriho, P. C.; et al. Stencil printing of liquid metal upon electrospun nanofibers enables high-performance flexible electronics. ACS. Nano. 2021, 15, 19364-76.

34. Lin, Y.; Gordon, O.; Khan, M. R.; Vasquez, N.; Genzer, J.; Dickey, M. D. Vacuum filling of complex microchannels with liquid metal. Lab. Chip. 2017, 17, 3043-50.

35. Yalcintas, E. P.; Ozutemiz, K. B.; Cetinkaya, T.; Dalloro, L.; Majidi, C.; Ozdoganlar, O. B. Soft electronics manufacturing using microcontact printing. Adv. Funct. Mater. 2019, 29, 1906551.

36. Frey, E. J.; Im, S.; Bachmann, A. L.; Genzer, J.; Dickey, M. D. Patterning of a high surface area liquid metal-carbon composite film using laser processing. Adv. Funct. Mater. 2024, 34, 2308574.

37. Lu, T.; Markvicka, E. J.; Jin, Y.; Majidi, C. Soft-matter printed circuit board with UV laser micropatterning. ACS. Appl. Mater. Interfaces. 2017, 9, 22055-62.

38. Kim, J. H.; Kim, S.; Kim, H.; et al. Imbibition-induced selective wetting of liquid metal. Nat. Commun. 2022, 13, 4763.

39. Zhu, H.; Wang, S.; Zhang, M.; Li, T.; Hu, G.; Kong, D. Fully solution processed liquid metal features as highly conductive and ultrastretchable conductors. npj. Flex. Electron. 2021, 5, 123.

40. Shi, G.; Peng, X.; Zeng, J.; et al. A liquid metal microdroplets initialized hemicellulose composite for 3D printing anode host in Zn-Ion battery. Adv. Mater. 2023, 35, e2300109.

41. Yang, Y.; Yan, L.; Zheng, Y.; Dai, L.; Si, C. Lignin-based vitrimer for high-resolution and full-component rapidly recycled liquid metal printed circuit. Adv. Funct. Mater. 2025, 35, 2425780.

42. Lin, Y.; Genzer, J.; Dickey, M. D. Attributes, fabrication, and applications of gallium-based liquid metal particles. Adv. Sci. 2020, 7, 2000192.

43. Scharmann, F.; Cherkashinin, G.; Breternitz, V.; et al. Viscosity effect on GaInSn studied by XPS. Surf. Interface. Anal. 2004, 36, 981-5.

44. Ren, L.; Zhuang, J.; Casillas, G.; et al. Nanodroplets for stretchable superconducting circuits. Adv. Funct. Mater. 2016, 26, 8111-8.

45. Dong, R.; Wang, L.; Hang, C.; et al. Printed stretchable liquid metal electrode arrays for in vivo neural recording. Small 2021, 17, e2006612.

46. Tang, L.; Cheng, S.; Zhang, L.; et al. Printable metal-polymer conductors for highly stretchable bio-devices. iScience 2018, 4, 302-11.

47. Mohammed, M. G.; Kramer, R. All-printed flexible and stretchable electronics. Adv. Mater. 2017, 19, 1604965.

48. Liu, J.; Xiao, L.; Rao, Z.; Dong, B.; Yin, Z.; Huang, Y. High-performance, micrometer thick/conformal, transparent metal-network electrodes for flexible and curved electronic devices. Adv. Mater. Technol. 2018, 3, 1800155.

49. Wen, J.; Tian, Y.; Hao, C.; et al. Fabrication of high performance printed flexible conductors by doping of polyaniline nanomaterials into silver paste. J. Mater. Chem. C. 2019, 7, 1188-97.

50. Li, D.; Lai, W. Y.; Zhang, Y. Z.; Huang, W. Printable transparent conductive films for flexible electronics. Adv. Mater. 2018, 30, 1704738.

51. Wang, S.; Zeng, G.; Sun, Q.; et al. Flexible electronic systems via electrohydrodynamic Jet printing: a MnSe@rGO cathode for aqueous zinc-ion batteries. ACS. Nano. 2023, 17, 13256-68.

52. Zeng, G.; Sun, Q.; Horta, S.; et al. A layered Bi2Te3 @PPy cathode for aqueous zinc-ion batteries: mechanism and application in printed flexible batteries. Adv. Mater. 2024, 36, 2470004.

53. Delenne, J.; Soulié, F.; El, Youssoufi. M. S.; Radjai, F. From liquid to solid bonding in cohesive granular media. Mech. Mater. 2011, 43, 529-37.

54. Lee, G. H.; Woo, H.; Yoon, C.; et al. A personalized electronic tattoo for healthcare realized by on-the-spot assembly of an intrinsically conductive and durable liquid-metal composite. Adv. Mater. 2022, 34, e2204159.

55. Chen, W.; Tang, Q.; Zhong, W.; et al. Directly printable and adhesive liquid metal ink for wearable devices. Adv. Funct. Mater. 2025, 35, 2411647.

56. Qiu, Y.; Zou, Z.; Zou, Z.; et al. Deep-learning-assisted printed liquid metal sensory system for wearable applications and boxing training. npj. Flex. Electron. 2023, 7, 272.

57. Zhao, R.; Guo, R.; Xu, X.; Liu, J. A fast and cost-effective transfer printing of liquid metal inks for three-dimensional wiring in flexible electronics. ACS. Appl. Mater. Interfaces. 2020, 12, 36723-30.

58. Kim, M. S.; Kim, S.; Choi, J.; et al. Stretchable printed circuit board based on leak-free liquid metal interconnection and local strain control. ACS. Appl. Mater. Interfaces. 2022, 14, 1826-37.

59. Guo, R.; Cui, B.; Zhao, X.; et al. Cu-EGaIn enabled stretchable e-skin for interactive electronics and CT assistant localization. Mater. Horiz. 2020, 7, 1845-53.

60. Lopes, P. A.; Fernandes, D. F.; Silva, A. F.; et al. Bi-Phasic Ag-In-Ga-embedded elastomer inks for digitally printed, ultra-stretchable, multi-layer electronics. ACS. Appl. Mater. Interfaces. 2021, 13, 14552-61.

61. Carneiro M, de Almeida AT, Tavakoli M, Majidi C. Recyclable thin-film soft electronics for smart packaging and E-skins. Adv. Sci. 2023, 10, e2301673.

62. Siegenthaler, K. O.; Künkel, A.; Skupin, G.; Yamamoto, M. Ecoflex® and Ecovio®: biodegradable, performance-enabling plastics. In: Rieger, B.; Künkel, A.; Coates, G.W.; Reichardt, R.; Dinjus, E.; Zevaco, T.A.; Eds.; Synthetic biodegradable polymers. Berlin: Springer Berlin Heidelberg, 2012; pp 91-136.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/