REFERENCES
1. Wei, R.; Li, H.; Chen, Z.; Hua, Q.; Shen, G.; Jiang, K. Revolutionizing wearable technology: advanced fabrication techniques for body-conformable electronics. npj. Flex. Electron. 2024, 8, 370.
2. Nong, H.; Jin, M.; Pan, C.; et al. Intelligent sensing technologies based on flexible wearable sensors: a review. IEEE. Sens. J. 2024, 24, 22197-217.
3. Liu, F.; Lorenzelli, L. Toward all flexible sensing systems for next-generation wearables. Wearable. Electron. 2024, 1, 137-49.
4. Li, J.; Bi, X.; Zhou, B.; Yang, S.; Yu, C. Nanocellulose-toughened super-stretchable ionic conductive gel fibers for wearable strain sensors. Int. J. Biol. Macromol. 2025, 299, 140227.
5. Mo, F.; Zhou, P.; Lin, S.; Zhong, J.; Wang, Y. A review of conductive hydrogel-based wearable temperature sensors. Adv. Healthc. Mater. 2024, 13, e2401503.
6. Guo, W.; Ma, M. Conductive nanocomposite hydrogels for flexible wearable sensors. J. Mater. Chem. A. 2024, 12, 9371-99.
7. Wang, L.; Xu, T.; Zhang, X. Multifunctional conductive hydrogel-based flexible wearable sensors. TrAC. Trends. Anal. Chem. 2021, 134, 116130.
8. Ouyang, Z.; Xu, D.; Yu, H.; Li, S.; Song, Y.; Tam, K. C. Novel ultrasonic-coating technology to design robust, highly sensitive and wearable textile sensors with conductive nanocelluloses. Chem. Eng. J. 2022, 428, 131289.
9. Wang, Z.; Xu, X.; Zhang, K.; et al. Continuous phase separation induced tough hydrogel fibers with ultrahigh conductivity for multidimensional soft electronics. Adv. Funct. Mater. 2025, 35, 2413478.
10. Wang, Z.; Xu, X.; Tan, R.; Zhang, S.; Zhang, K.; Hu, J. Hierarchically structured hydrogel composites with ultra‐high conductivity for soft electronics. Adv. Funct. Mater. 2024, 34, 2312667.
11. Yan, X.; Zhao, R.; Lin, H.; Zhao, Z.; Song, S.; Wang, Y. Nucleobase‐driven wearable ionogel electronics for long‐term human motion detection and electrophysiological signal monitoring. Adv. Funct. Mater. 2025, 35, 2412244.
12. Li, Y.; Feng, X.; Zhu, L.; et al. High performance fiber-constrained plasticized PVC gel actuators for soft robotics. Sens. Actuators. B. Chem. 2023, 393, 134177.
13. Hyun, J. E.; Lim, T.; Kim, S. H.; Lee, J. H. Wearable ion gel based pressure sensor with high sensitivity and ultra-wide sensing range for human motion detection. Chem. Eng. J. 2024, 484, 149464.
14. Ma, B.; Huang, K.; Chen, G.; et al. A dual-mode wearable sensor with coupled ion and pressure sensing. Soft. Sci. 2024, 4, 8.
15. Lei, T.; Wang, Y.; Feng, Y.; et al. PNIPAAm-based temperature responsive ionic conductive hydrogels for flexible strain and temperature sensing. J. Colloid. Interface. Sci. 2025, 678, 726-41.
16. Zhong, L.; Zhang, Y.; Liu, F.; et al. Muscle-inspired anisotropic carboxymethyl cellulose-based double-network conductive hydrogels for flexible strain sensors. Int. J. Biol. Macromol. 2023, 248, 125973.
17. Wang, K.; Shen, Y.; Wang, T.; et al. An ultrahigh-strength braided smart yarn for wearable individual sensing and protection. Adv. Fiber. Mater. 2024, 6, 786-97.
18. Lu, H.; Zhang, Y.; Zhu, M.; et al. Intelligent perceptual textiles based on ionic-conductive and strong silk fibers. Nat. Commun. 2024, 15, 3289.
19. Xu, D.; Ouyang, Z.; Dong, Y.; et al. Robust, breathable and flexible smart textiles as multifunctional sensor and heater for personal health management. Adv. Fiber. Mater. 2023, 5, 282-95.
20. Zhang, Y.; Zhang, R.; Tao, Y. Conductive, water-retaining and knittable hydrogel fiber from xanthan gum and aniline tetramer modified-polysaccharide for strain and pressure sensors. Carbohydr. Polym. 2023, 321, 121300.
21. Xie, Y.; Lv, X.; Li, Y.; et al. Carbon nanotubes and silica@polyaniline core-shell particles synergistically enhance the toughness and electrical conductivity in hydrophobic associated hydrogels. Langmuir 2023, 39, 1299-308.
22. Li, J.; Wan, K.; Zhu, T.; et al. Fibrous conductive metallogels with hybrid electron/ion networks for boosted extreme sensitivity and high linearity strain sensor. Macromol. Rapid. Commun. 2024, 45, e2300568.
23. Lee, J. H.; Nam, I.; Hyun, J. E.; Ahn, H.; Yeo, S. Y.; Lim, T. Conductive and robust cellulose hydrogel generated by liquid metal for biomedical applications. ACS. Appl. Polym. Mater. 2024, 6, 49-58.
24. Fu, Y.; Wang, Z.; Wu, K.; et al. Bio-inspired multifunctional hydrogels with adhesive, anti-bacterial, anti-icing and sensing properties. Chin. Chem. Lett. 2025, 36, 110479.
25. Zhang, C.; Yao, M.; Zhao, Y.; Nie, J.; He, Y. Spatial adjustment strategy to improve the sensitivity of ionogels for flexible sensors. Macromol. Chem. Phys. 2022, 223, 2200035.
26. Yang, P. A.; Cui, X.; Li, R.; et al. Highly sensitive and selective multidirectional flexible strain sensors with cross-shaped structure based on Fe NWs/graphene/interlock knit fabric for human activity monitoring. IEEE. Sens. J. 2023, 23, 23440-7.
27. Man, Y.; Liu, Y.; Miao, H.; et al. Stretchable and high sensitive ionic conductive hydrogel for the direction recognizable motion detection sensor. Giant 2023, 16, 100199.
28. Liu, Z.; Zhu, T.; Wang, J.; et al. Functionalized fiber-based strain sensors: pathway to next-generation wearable electronics. Nanomicro. Lett. 2022, 14, 61.
29. Xu, J.; Qiu, Z.; Yang, M.; et al. Stretchable transparent electrode via wettability self-assembly in mechanically induced self-cracking. ACS. Appl. Mater. Interfaces. 2021, 13, 52880-91.
30. Liu, Y.; Zhang, C.; Chen, Y.; Yin, R.; He, P.; Zhao, W. Rational design of conductive pathways in flexible tactile sensors via indirect 3D-printing of liquid metal for high-precision monitoring and recognition. ACS. Appl. Mater. Interfaces. 2023, 15, 38572-80.
31. Yuan, Y.; Yang, Q.; Wu, Q.; et al. In-situ copolymerization Ion-Gel-based flexible sensor for wearable dimethyl methylphosphonate detection. Sens. Actuators. B. Chem. 2024, 404, 135274.
32. Wan, Y.; Liu, H.; Yan, K.; Li, X.; Lu, Z.; Wang, D. An ionic/thermal-responsive agar/alginate wet-spun microfiber-shaped hydrogel combined with grooved/wrinkled surface patterns and multi-functions. Carbohydr. Polym. 2023, 304, 120501.
33. Zhang, Y.; Zhou, J.; Zhang, Y.; Zhang, D.; Yong, K. T.; Xiong, J. Elastic fibers/fabrics for wearables and bioelectronics. Adv. Sci. 2022, 9, e2203808.
34. Wang, Z.; Cong, Y.; Fu, J. Stretchable and tough conductive hydrogels for flexible pressure and strain sensors. J. Mater. Chem. B. 2020, 8, 3437-59.
35. Liu, D.; Huyan, C.; Wang, Z.; et al. Conductive polymer based hydrogels and their application in wearable sensors: a review. Mater. Horiz. 2023, 10, 2800-23.