REFERENCES

1. Moin, A.; Zhou, A.; Rahimi, A.; et al. A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition. Nat. Electron. 2021, 4, 54-63.

2. Wang, J.; Li, S.; Yi, F.; et al. Sustainably powering wearable electronics solely by biomechanical energy. Nat. Commun. 2016, 7, 12744.

3. Liu, Y.; Yiu, C.; Song, Z.; et al. Electronic skin as wireless human-machine interfaces for robotic VR. Sci. Adv. 2022, 8, eabl6700.

4. Xu, G.; Wang, H.; Zhao, G.; et al. Self-powered electrotactile textile haptic glove for enhanced human-machine interface. Sci. Adv. 2025, 11, eadt0318.

5. Fan, F.; Tian, Z.; Lin, Wang. Z. Flexible triboelectric generator. Nano. Energy. 2012, 1, 328-34.

6. Zhu, G.; Chen, J.; Liu, Y.; et al. Linear-grating triboelectric generator based on sliding electrification. Nano. Lett. 2013, 13, 2282-9.

7. Du, Y.; Wang, Z. L.; Wei, D. Emerging sensing systems based on triboelectric nanogenerator. Nano. Energy. 2025, 143, 111292.

8. Du, Y.; Tang, Q.; He, W.; et al. Harvesting ambient mechanical energy by multiple mode triboelectric nanogenerator with charge excitation for self-powered freight train monitoring. Nano. Energy. 2021, 90, 106543.

9. Zhao, H.; Xu, M.; Shu, M.; et al. Underwater wireless communication via TENG-generated Maxwell’s displacement current. Nat. Commun. 2022, 13, 3325.

10. Du, Y.; Fu, S.; Shan, C.; et al. A novel design based on mechanical time-delay switch and charge space accumulation for high output performance direct-current triboelectric nanogenerator. Adv. Funct. Mater. 2022, 32, 2208783.

11. Byun, K.; Lee, M.; Cho, Y.; Nam, S.; Shin, H.; Park, S. Potential role of motion for enhancing maximum output energy of triboelectric nanogenerator. APL. Mater. 2017, 5, 074107.

12. Gai, L.; Wang, F.; Zhou, F. A stretchable triboelectric nanogenerator integrated ion coagulation electrode for cheerleading monitoring. J. Electron. Mater. 2022, 51, 7182-9.

13. Zong, R.; Gao, Y.; Feng, J.; Li, Y.; Qi, L. A self-powered and self-sensing human kinetic energy harvesting system for application in wireless smart headphones. Sustain. Mater. Technol. 2025, 43, e01272.

14. Faruk, O.; Islam, M. R.; Pradhan, G. B.; et al. A wearable triboelectric-iontronic hybrid smart finger ring with self-powered static-dynamic tactile sensing for advanced human-machine interactions. Adv. Funct. Mater. 2025, e27394.

15. Yang, P.; Shi, Y.; Li, S.; et al. Monitoring the degree of comfort of shoes in-motion using triboelectric pressure sensors with an ultrawide detection range. ACS. Nano. 2022, 16, 4654-65.

16. Yu, A.; Pu, X.; Wen, R.; et al. Core-shell-yarn-based triboelectric nanogenerator textiles as power cloths. ACS. Nano. 2017, 11, 12764-71.

17. Fan, F. R.; Tang, W.; Wang, Z. L. Flexible nanogenerators for energy harvesting and self-powered electronics. Adv. Mater. 2016, 28, 4283-305.

18. Du, Y.; Song, J.; Liu, H.; et al. Self-powered triboelectric sensor for real-time, intelligent occlusal force monitoring. Adv. Funct. Mater. 2025, e19646.

19. Pu, X.; Zhang, C.; Wang, Z. L. Triboelectric nanogenerators as wearable power sources and self-powered sensors. Natl. Sci. Rev. 2023, 10, nwac170.

20. Liu, G.; Gao, Y.; Xu, S.; et al. One-stop fabrication of triboelectric nanogenerator based on 3D printing. EcoMat 2021, 3, e12130.

21. Sheng, F.; Yi, J.; Shen, S.; et al. Self-powered smart arm training band sensor based on extremely stretchable hydrogel conductors. ACS. Appl. Mater. Interfaces. 2021, 13, 44868-77.

22. Xu, F.; Dong, S.; Liu, G.; et al. Scalable fabrication of stretchable and washable textile triboelectric nanogenerators as constant power sources for wearable electronics. Nano. Energy. 2021, 88, 106247.

23. Li, Y.; Zhang, Y.; Yi, J.; et al. Large-scale fabrication of core-shell triboelectric braided fibers and power textiles for energy harvesting and plantar pressure monitoring. EcoMat 2022, 4, e12191.

24. Pu, X.; Li, L.; Song, H.; et al. A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics. Adv. Mater. 2015, 27, 2472-8.

25. Liu, G. X.; Li, W. J.; Liu, W. B.; et al. Soft tubular triboelectric nanogenerator for biomechanical energy harvesting. Adv. Sustain. Syst. 2018, 2, 1800081.

26. Niu, S.; Wang, X.; Yi, F.; Zhou, Y. S.; Wang, Z. L. A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics. Nat. Commun. 2015, 6, 8975.

27. Bai, Z.; Xu, Y.; Lee, C.; Guo, J. Autonomously adhesive, stretchable, and transparent solid-state polyionic triboelectric patch for wearable power source and tactile sensor. Adv. Funct. Mater. 2021, 31, 2104365.

28. Yuan, W.; Zhang, C.; Zhang, B.; et al. Wearable, breathable and waterproof triboelectric nanogenerators for harvesting human motion and raindrop energy. Adv. Mater. Technol. 2022, 7, 2101139.

29. Wen, Z.; Yang, Y.; Sun, N.; et al. A wrinkled PEDOT:PSS film based stretchable and transparent triboelectric nanogenerator for wearable energy harvesters and active motion sensors. Adv. Funct. Mater. 2018, 28, 1803684.

30. Wang, L.; Daoud, W. A. Highly flexible and transparent polyionic-skin triboelectric nanogenerator for biomechanical motion harvesting. Adv. Energy. Mater. 2019, 9, 1803183.

31. Chen, C.; Guo, H.; Chen, L.; et al. Direct current fabric triboelectric nanogenerator for biomotion energy harvesting. ACS. Nano. 2020, 14, 4585-94.

32. Lee, H.; Lee, H. E.; Wang, H. S.; et al. Hierarchically surface-textured ultrastable hybrid film for large-scale triboelectric nanogenerators. Adv. Funct. Mater. 2020, 30, 2005610.

33. Huang, T.; Zhang, J.; Yu, B.; et al. Fabric texture design for boosting the performance of a knitted washable textile triboelectric nanogenerator as wearable power. Nano. Energy. 2019, 58, 375-83.

34. Li, Z.; Huang, H.; Shen, J.; et al. 3-D woven triboelectric nanogenerators with integrated friction, spacer, and electrode layers for wearable energy harvesting and mechanical sensing. Nano. Energy. 2025, 135, 110622.

35. Dong, K.; Deng, J.; Ding, W.; et al. Versatile core–sheath yarn for sustainable biomechanical energy harvesting and real-time human-interactive sensing. Adv. Energy. Mater. 2018, 8, 1801114.

36. Cheng, R.; Dong, K.; Chen, P.; et al. High output direct-current power fabrics based on the air breakdown effect. Energy. Environ. Sci. 2021, 14, 2460-71.

37. Xiong, J.; Cui, P.; Chen, X.; et al. Skin-touch-actuated textile-based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvesting. Nat. Commun. 2018, 9, 4280.

38. Guo, H.; Pu, X.; Chen, J.; et al. A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids. Sci. Robot. 2018, 3, eaat2516.

39. Wang, H. L.; Guo, Z. H.; Pu, X.; Wang, Z. L. Ultralight iontronic triboelectric mechanoreceptor with high specific outputs for epidermal electronics. Nanomicro. Lett. 2022, 14, 86.

40. Meng, K.; Chen, J.; Li, X.; et al. Flexible weaving constructed self-powered pressure sensor enabling continuous diagnosis of cardiovascular disease and measurement of cuffless blood pressure. Adv. Funct. Mater. 2019, 29, 1806388.

41. Peng, X.; Dong, K.; Ning, C.; et al. All-nanofiber self-powered skin-interfaced real-time respiratory monitoring system for obstructive sleep apnea-hypopnea syndrome diagnosing. Adv. Funct. Mater. 2021, 31, 2103559.

42. Du, Y.; Shen, P.; Liu, H.; et al. Conformal self-powered inertial displacement sensor with geometric optimization for in situ noninvasive data acquisition. Adv. Funct. Mater. 2024, 34, 2409602.

43. Lu, Y.; Tian, H.; Cheng, J.; et al. Decoding lip language using triboelectric sensors with deep learning. Nat. Commun. 2022, 13, 1401.

44. Pu, X.; Guo, H.; Chen, J.; et al. Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator. Sci. Adv. 2017, 3, e1700694.

45. Du, Y.; Shen, P.; Liu, H.; et al. Multi-receptor skin with highly sensitive tele-perception somatosensory. Sci. Adv. 2024, 10, eadp8681.

46. Du, Y.; Shen, P.; Liu, H.; et al. Meta-structured electret heterointerface for resilient and adaptive tele-perception in embodied intelligence. Matter 2025, 8, 102363.

47. Du, Y.; Wang, Z.; Wei, D. Advancing tele-perception: a paradigm shift from traditional non-contact sensing to adaptive embodied artificial intelligence systems. Sci. Bull. 2025, 70, 1375-9.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/