REFERENCES
1. Wang, J.; Wang, B.; Wang, Z.; et al. Synthesis of 3D flower-like ZnO/ZnCo2O4 composites with the heterogeneous interface for excellent electromagnetic wave absorption properties. J. Colloid. Interface. Sci. 2021, 586, 479-90.
2. Zhang, S.; Lan, D.; Zheng, J.; et al. Perspectives of nitrogen-doped carbons for electromagnetic wave absorption. Carbon 2024, 221, 118925.
3. Liu, Y.; Tian, C.; Wang, F.; et al. Dual-pathway optimization on microwave absorption characteristics of core-shell Fe3O4@C microcapsules: composition regulation on magnetic core and MoS2 nanosheets growth on carbon shell. Chem. Eng. J. 2023, 461, 141867.
4. Qu, N.; Xu, G.; Liu, Y.; et al. Multi-scale design of metal-organic framework metamaterials for broad-band microwave absorption. Adv. Funct. Mater. 2025, 35, 2402923.
5. Guo, Y.; Ruan, K.; Wang, G.; Gu, J. Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption. Sci. Bull. 2023, 68, 1195-212.
6. Lv, H.; Yang, Z.; Pan, H.; Wu, R. Electromagnetic absorption materials: current progress and new frontiers. Prog. Mater. Sci. 2022, 127, 100946.
7. Wu, Q.; Ma, Z.; Wang, C.; et al. Carbon nanofibers with small-sized Co nanoparticles and structural defects via a confined-coordination growth strategy toward electromagnetic wave absorption. J. Adv. Ceram. 2025, 14, 9221210.
8. Huang, M.; Wang, L.; You, W.; Che, R. Single zinc atoms anchored on MOF-derived N-doped carbon shell cooperated with magnetic core as an ultrawideband microwave absorber. Small 2021, 17, e2101416.
9. Lin, Y.; Zhou, X.; Wang, Y.; et al. Progress of MOFs composites in the field of microwave absorption. Carbon 2025, 238, 120241.
10. Liu, A.; Xu, X.; Qiu, H.; et al. Bioinspired hollow heterostructure fillers for enhanced electromagnetic interference shielding in polyimide aerogels. InfoMat 2025, 7, e70060.
11. Lou, Z.; Wang, Q.; Kara, U. I.; et al. Biomass-derived carbon heterostructures enable environmentally adaptive wideband electromagnetic wave absorbers. Nano-Micro. Lett. 2021, 14, 11.
12. Wen, B.; Cao, M.; Lu, M.; et al. Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 2014, 26, 3484-9.
13. Xiao, J.; Zhan, B.; He, M.; et al. Interfacial polarization loss improvement induced by the hollow engineering of necklace-like PAN/carbon nanofibers for boosted microwave absorption. Adv. Funct. Mater. 2025, 35, 2316722.
14. Zhao, T.; Jia, Z.; Zhang, Y.; Wu, G. Multiphase molybdenum carbide doped carbon hollow sphere engineering: the superiority of unique double-shell structure in microwave absorption. Small 2023, 19, e2206323.
15. Gang, S.; He, H.; Long, H.; et al. 2D-high entropy alloys embedded in 3D-carbon foam towards light-weight electromagnetic wave absorption and hydrophobic thermal insulation. Nano. Energy. 2025, 135, 110642.
16. Zhu, Y.; Liu, T.; Li, L.; Cao, M. Multifunctional WSe2/Co3C composite for efficient electromagnetic absorption, EMI shielding, and energy conversion. Nano. Res. 2024, 17, 1655-65.
17. Liu, P.; He, Z.; Li, X.; Ding, L.; Liu, S.; Kong, J. Multifunctional hollow carbon microspheres enable superior electromagnetic wave response and corrosion barrier. Adv. Mater. 2025, 37, e2500646.
18. Li, L.; Ban, Q.; Song, Y.; et al. Self-templating engineering of hollow N-doped carbon microspheres anchored with ternary FeCoNi alloys for low-frequency microwave absorption. Small 2024, 20, e2406602.
19. Huang, H.; Wang, Y.; Yuan, S.; et al. Heteroatom-doped hollow bimetallic carbon nanofibers induce polarization-dominated multiple loss mechanisms for microwave absorption. Chem. Eng. J. 2025, 507, 160683.
20. Shao, C.; Liu, H.; Shi, Y.; Tian, N.; You, C.; Zhao, Z. Dielectric-magnetic synergy in ferrite/carbon composites for electromagnetic microwave absorption. Nano. Res. 2025, 18, 94907815.
21. Wu, Z.; Cheng, H. W.; Jin, C.; et al. Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 2022, 34, e2107538.
22. Zhao, B.; Li, Y.; Zeng, Q.; et al. Galvanic replacement reaction involving core-shell magnetic chains and orientation-tunable microwave absorption properties. Small 2020, 16, e2003502.
23. Chen, N.; Wang, R.; Pan, X.; et al. Hollow engineering of core-shell Fe3O4@MoS2 microspheres with controllable interior toward optimized electromagnetic attenuation. Adv. Compos. Hybrid. Mater. 2025, 8, 1393.
24. Ban, Q.; Li, L.; Liu, H.; et al. Polymerization-induced assembly-etching engineering to hollow Co@N-doped carbon microcages for superior electromagnetic wave absorption. Carbon 2023, 215, 118506.
25. Liu, S.; Zhou, D.; Huang, F.; et al. Heterointerface engineering of polymer-based electromagnetic wave absorbing materials. Soft. Sci. 2025, 5, 7.
26. Ma, Z.; Yang, K.; Li, D.; et al. The electron migration polarization boosting electromagnetic wave absorption based on Ce atoms modulated yolk@shell FexN@NGC. Adv. Mater. 2024, 36, e2314233.
27. Lian, Y.; Han, B.; Liu, D.; et al. Solvent-free synthesis of ultrafine tungsten carbide nanoparticles-decorated carbon nanosheets for microwave absorption. Nano-Micro. Lett. 2020, 12, 153.
28. Zhou, X.; Jia, Z.; Zhang, X.; et al. Electromagnetic wave absorption performance of NiCo2X4 (X = O, S, Se, Te) spinel structures. Chem. Eng. J. 2021, 420, 129907.
29. Wu, P.; Wang, J.; Li, J.; Feng, J.; He, W.; Guo, H. Pseudo-binary composite of Sr2TiMoO6-Al2O3 as a novel microwave absorbing material. Rare. Met. 2025, 44, 503-14.
30. Zhu, S.; Shu, J.; Cao, M. Tailorable MOF architectures for high-efficiency electromagnetic functions. Mater. Chem. Front. 2021, 5, 6444-60.
31. Zhang, Y.; Zhu, C.; Gao, S. Multi-scale magnetic and electric interaction in gradient magnetic-dielectric heterostructures with excellent low-frequency electromagnetic wave absorption. Nano. Res. 2025, 18, 94907622.
32. Zhao, Z.; Zhang, L.; Wu, H. Hydro/organo/ionogels: “controllable” electromagnetic wave absorbers. Adv. Mater. 2022, 34, e2205376.
33. Zhao, Y.; Wang, W.; Wang, Q.; et al. Construction of excellent electromagnetic wave absorber from multi-heterostructure materials derived from ZnCo2O4 and ZIF-67 composite. Carbon 2021, 185, 514-25.
34. Li, T.; Ma, L.; Wang, L.; et al. Ultra-wide band electromagnetic wave absorption by decorating the magnetic particles on two-dimensional Ti3C2Tx. Rare. Met. 2025, 44, 1844-55.
35. Qi, J.; Liang, C.; Ruan, K.; et al. Cactus-like architecture for synergistic microwave absorption and thermal management. Natl. Sci. Rev. 2025, 12, nwaf394.
36. Zhao, H.; Xu, X.; Wang, Y.; et al. Heterogeneous interface induced the formation of hierarchically hollow carbon microcubes against electromagnetic pollution. Small 2020, 16, e2003407.
37. Zhan, B.; Qu, Y.; Qi, X.; et al. Mixed-dimensional assembly strategy to construct reduced graphene oxide/carbon foams heterostructures for microwave absorption, anti-corrosion and thermal insulation. Nanomicro. Lett. 2024, 16, 221.
38. Su, X.; Wang, J.; Liu, T.; et al. Controllable atomic migration in microstructures and defects for electromagnetic wave absorption enhancement. Adv. Funct. Mater. 2024, 34, 2403397.
39. Nguyen, T. T.; Edalati, K. High-entropy oxide with tailored heterogeneous electronic structure as a low-bandgap catalyst for antibiotic photodegradation under visible light. Appl. Catal. B:. Environ. Energy. 2026, 382, 126011.
40. Wang, Y.; Zhao, P.; Liang, B.; Chen, K.; Wang, G. Carbon nanotubes decorated Co/C from ZIF-67/melamine as high efficient microwave absorbing material. Carbon 2023, 202, 66-75.
41. Guo, S.; Zhu, J.; Song, Z.; et al. Multispectral ErBO3@ATO porous composite microspheres with laser and electromagnetic wave compatible absorption. Rare. Met. 2023, 42, 2406-18.
42. Sun, R.; Lv, H.; Lian, G.; et al. Dielectric shell regulation in synergy FeCoNi@ZnIn2S4 microspheres with broadband electromagnetic wave absorption. Soft. Sci. 2025, 5.
43. Zhang, Y.; Kong, J.; Gu, J. New generation electromagnetic materials: harvesting instead of dissipation solo. Sci. Bull. 2022, 67, 1413-5.
44. Wang, X.; Pan, F.; Xiang, Z.; et al. Magnetic vortex core-shell Fe3O4@C nanorings with enhanced microwave absorption performance. Carbon 2020, 157, 130-9.
45. Hai, H. T. N.; Arita, M.; Edalati, K. High-entropy perovskites as new photocatalysts for cocatalyst-free water splitting. Appl. Catal. B:. Environ. Energy. 2026, 383, 126081.
46. Lv, H.; Cui, J.; Li, B.; Yuan, M.; Liu, J.; Che, R. Insights into civilian electromagnetic absorption materials: challenges and innovative solutions. Adv. Funct. Mater. 2025, 35, 2315722.
47. Ren, S.; Yu, H.; Wang, L.; et al. State of the art and prospects in metal-organic framework-derived microwave absorption materials. Nano-Micro. Lett. 2022, 14, 68.
48. Ma, D.; Zhang, Y.; Gao, S. Magnetic-dielectric synergy in manganese ferrite/coal gasification fine slag composites for broadband electromagnetic wave absorption. Chem. Eng. Sci. 2026, 320, 122480.
49. Wang, N.; Kou, X.; Zhong, L.; et al. Geometry-defect-spin coupling in chiral high-entropy systems: multiscale mechanisms of GHz electromagnetic dissipation. Sci. Adv. 2025, 11, eadz2218.
50. Xiong, T.; Luo, Y.; Qian, Y.; et al. High electromagnetic wave absorption and flame retardancy performance from NF@HCS/NF-filled epoxy-based electronic packaging material. J. Mater. Chem. A. 2024, 12, 1094-105.
51. Hidalgo-jiménez, J.; Akbay, T.; Sauvage, X.; Ishihara, T.; Edalati, K. Mixed atomic-scale electronic configuration as a strategy to avoid cocatalyst utilization in photocatalysis by high-entropy oxides. Acta. Materialia. 2025, 283, 120559.
52. Li, Y.; Xiong, T.; Xu, C.; et al. Al2O3/h-BN/epoxy based electronic packaging material with high thermal conductivity and flame retardancy. J. Appl. Polym. Sci. 2023, 140, e53291.
53. Zhao, Y.; Wang, N.; Wang, H.; et al. Chiral structure induces spatial spiral arrangement of Fe3O4 nanoparticles to optimize electromagnetic wave dissipation. Appl. Phys. Lett. 2024, 124, 161901.
54. Cao, R.; Qiu, Y.; Zhao, X.; et al. Carbon-CoFe2O4 composite with hierarchical porous structure for efficient microwave absorption. Diamond. Relat. Mater. 2025, 157, 112542.
55. Jiang, J.; Lan, D.; Li, Y.; et al. Construction of spherical heterogeneous interface on ZnFe2O4@C composite nanofibers for highly efficient microwave absorption. Ceram. Int. 2024, 50, 38331-41.
56. Liu, M.; Zhao, B.; Pei, K.; et al. An ion-engineering strategy to design hollow FeCo/CoFe2O4 microspheres for high-performance microwave absorption. Small 2023, 19, e2300363.
57. Chai, L.; Wang, Y.; Zhou, N.; et al. In-situ growth of core-shell ZnFe2O4 @ porous hollow carbon microspheres as an efficient microwave absorber. J. Colloid. Interface. Sci. 2021, 581, 475-84.
58. Mandal, D.; Bhandari, B.; Mullurkara, S. V.; Ohodnicki, P. R. All-around electromagnetic wave absorber based on Ni-Zn ferrite. ACS. Appl. Mater. Interfaces. 2024, 16, 33846-54.
59. Wu, H.; Liu, J.; Liang, H.; Zang, D. Sandwich-like Fe3O4/Fe3S4 composites for electromagnetic wave absorption. Chem. Eng. J. 2020, 393, 124743.
60. Chen, W.; Liu, Q.; Zhu, X.; Fu, M. One-step in situ growth of magnesium ferrite nanorods on graphene and their microwave-absorbing properties. Appl. Organomet. Chem. 2018, 32, e4017.
61. Ma, J.; Zhao, B.; Xiang, H.; et al. High-entropy spinel ferrites MFe2O4 (M = Mg, Mn, Fe, Co, Ni, Cu, Zn) with tunable electromagnetic properties and strong microwave absorption. J. Adv. Ceram. 2022, 11, 754-68.
62. Guo, L.; He, Y.; Chen, D.; et al. Hydrothermal synthesis and microwave absorption properties of nickel ferrite/multiwalled carbon nanotubes composites. Coatings 2021, 11, 534.
63. Xiang, X.; Gao, S.; Zhang, Y. Magnetic-electric synergistic coal gangue-based high-efficiency electromagnetic wave absorber. Chem. Eng. J. 2025, 524, 169310.







