REFERENCES
1. Gokhare, V. G.; Raut, D. N.; Shinde, D. K. A review paper on 3D-printing aspects and various processes used in the 3D-printing. Int. J. Eng. Res. Technol. 2017, 6, 953-58. https://www.ijert.org/research/a-review-paper-on-3d-printing-aspects-and-various-processes-used-in-the-3d-printing-IJERTV6IS060409.pdf. (accessed 13 Jan 2026).
2. Dabbagh, S. R.; Sarabi, M. R.; Birtek, M. T.; Seyfi, S.; Sitti, M.; Tasoglu, S. 3D-printed microrobots from design to translation. Nat. Commun. 2022, 13, 5875.
3. Rafiee, M.; Farahani, R. D.; Therriault, D. Multi-material 3D and 4D printing: a survey. Adv. Sci. 2020, 7, 1902307.
4. Bliah, O.; Hegde, C.; Tan, J. M. R.; Magdassi, S. Fabrication of soft robotics by additive manufacturing: from materials to applications. Chem. Rev. 2025, 125, 7275-320.
5. Liu, H.; Wu, C.; Lin, S.; Lam, J.; Xi, N.; Chen, Y. Advances in 3D and 4D printing of soft robotics and their applications. Adv. Intell. Syst. 2025, 7, 2400699.
6. Kim, J.; Mayorga-Burrezo, P.; Song, S. J.; et al. Advanced materials for micro/nanorobotics. Chem. Soc. Rev. 2024, 53, 9190-253.
7. Mitchell, A.; Lafont, U.; Hołyńska, M.; Semprimoschnig, C. Additive manufacturing - a review of 4D printing and future applications. Addit. Manuf. 2018, 24, 606-26.
8. Choi, J.; Kwon, O.; Jo, W.; Lee, H. J.; Moon, M. 4D printing technology: a review. 3D. Print. Addit. Manuf. 2015, 2, 159-67.
9. Kuang, X.; Roach, D. J.; Wu, J.; et al. Advances in 4D printing: materials and applications. Adv. Funct. Mater. 2019, 29, 1805290.
10. Momeni, F.; Hassani, S. M. M.; Liu, X.; Ni, J. A review of 4D printing. Mater. Design. 2017, 122, 42-79.
11. Gladman, A. S.; Matsumoto, E. A.; Nuzzo, R. G.; Mahadevan, L.; Lewis, J. A. Biomimetic 4D printing. Nat. Mater. 2016, 15, 413-8.
13. Shi, X.; Zhang, L.; Cheng, L.; et al. Multilayer self-sensing hydrogel soft robot prepared via stereolithography for on-demand drug delivery. Chem. Eng. J. 2025, 519, 164352.
14. Abolhassani, S.; Fattahi, R.; Safshekan, F.; Saremi, J.; Hasanzadeh, E. Advances in 4D bioprinting: the next frontier in regenerative medicine and tissue engineering applications. Adv. Healthc. Mater. 2025, 14, e2403065.
15. Ni, C.; Chen, D.; Yin, Y.; et al. Shape memory polymer with programmable recovery onset. Nature 2023, 622, 748-53.
16. Li, F.; Sun, S.; Wan, X.; Sun, M.; Zhang, S. L.; Xu, M. A self-powered soft triboelectric-electrohydrodynamic pump. Nat. Commun. 2025, 16, 1315.
17. Ding, Z.; Weeger, O.; Qi, H. J.; Dunn, M. L. 4D rods: 3D structures via programmable 1D composite rods. Mater. Design. 2018, 137, 256-65.
18. Wan, X.; Xiao, Z.; Tian, Y.; et al. Recent advances in 4D printing of advanced materials and structures for functional applications. Adv. Mater. 2024, 36, e2312263.
19. Apsite, I.; Salehi, S.; Ionov, L. Materials for smart soft actuator systems. Chem. Rev. 2022, 122, 1349-415.
20. Ge, F.; Zhao, Y. Microstructured actuation of liquid crystal polymer networks. Adv. Funct. Mater. 2020, 30, 1901890.
21. Xiao, Y.; Jiang, Z.; Zhao, Y. Liquid crystal polymer-based soft robots. Adv. Intell. Syst. 2020, 2, 2000148.
22. Ge, Q.; Sakhaei, A. H.; Lee, H.; Dunn, C. K.; Fang, N. X.; Dunn, M. L. Multimaterial 4D printing with tailorable shape memory polymers. Sci. Rep. 2016, 6, 31110.
23. Chung, H.; Parsons, A. M.; Zheng, L. Magnetically controlled soft robotics utilizing elastomers and gels in actuation: a review. Adv. Intell. Syst. 2021, 3, 2000186.
24. Sol, J. A. H. P.; Smits, L. G.; Schenning, A. P. H. J.; Debije, M. G. Direct ink writing of 4D structural colors. Adv. Funct. Mater. 2022, 32, 2201766.
25. Lalegani Dezaki, M.; Bodaghi, M.; Serjouei, A.; Afazov, S.; Zolfagharian, A. Soft pneumatic actuators with controllable stiffness by bio-inspired lattice chambers and fused deposition modeling 3D printing. Adv. Eng. Mater. 2023, 25, 2200797.
26. Paunović, N.; Meyer, D.; Krivitsky, A.; Studart, A. R.; Bao, Y.; Leroux, J. C. 4D printing of biodegradable elastomers with tailorable thermal response at physiological temperature. J. Control. Release. 2023, 361, 417-26.
27. Chaudhary, R.; Fabbri, P.; Leoni, E.; Mazzanti, F.; Akbari, R.; Antonini, C. Additive manufacturing by digital light processing: a review. Prog. Addit. Manuf. 2023, 8, 331-51.
28. Ren, Z.; Xin, C.; Liang, K.; et al. Femtosecond laser writing of ant-inspired reconfigurable microbot collectives. Nat. Commun. 2024, 15, 7253.
29. Sartori, P.; Yadav, R. S.; Del, Barrio. J.; DeSimone, A.; Sánchez-Somolinos, C. Photochemically induced propulsion of a 4D printed liquid crystal elastomer biomimetic swimmer. Adv. Sci. 2024, 11, e2308561.
30. Li, Y.; Wang, Z.; Lu, Y.; et al. Thermal gradient-driven heterogeneous actuation of liquid crystal elastomers for a crawling robot. ACS. Appl. Mater. Interfaces. 2025, 17, 9992-10003.
31. Zhang, S.; Li, Y.; Li, Z.; et al. 3D-printed soft magnetoactive origami actuators. Adv. Funct. Mater. 2025, 35, e16404.
32. Xia, Y.; Mu, T.; Guo, J.; Liu, Y.; Leng, J. Multifunctional untethered soft machines driven by 4D printed electrically responsive actuators. ACS. Appl. Mater. Interfaces. 2025, 17, 36059-68.
33. Xiao, Y.; Zhao, X.; Ma, L.; et al. An acoustically actuated hydrogel shape-morphing micromachine. Sens. Actuators. B. Chem. 2026, 446, 138720.
34. Cao, Z. Y.; Sai, H.; Wang, W.; et al. Bioinspired microhinged actuators for active mechanism-based metamaterials. Adv. Sci. 2025, 12, e2407231.
35. Wang, X.; Qin, X.; Hu, C.; et al. 3D printed enzymatically biodegradable soft helical microswimmers. Adv. Funct. Mater. 2018, 28, 1804107.
36. TirgarBahnamiri, P.; Bagheri-Khoulenjani, S. Biodegradable microrobots for targeting cell delivery. Med. Hypotheses. 2017, 102, 56-60.
37. Ye, M.; Zhou, Y.; Zhao, H.; Wang, Z.; Nelson, B. J.; Wang, X. A review of soft microrobots: material, fabrication, and actuation. Adv. Intell. Syst. 2023, 5, 2300311.
38. Soreni-Harari, M.; St Pierre, R.; McCue, C.; Moreno, K.; Bergbreiter, S. Multimaterial 3D printing for microrobotic mechanisms. Soft. Robot. 2020, 7, 59-67.
39. Darmawan, B. A.; Lee, S. B.; Nguyen, V. D.; et al. Self-folded microrobot for active drug delivery and rapid ultrasound-triggered drug release. Sens. Actuators. B. Chem. 2020, 324, 128752.
40. Tyagi, M.; Pan, J.; Jager, E. W. H. Novel fabrication of soft microactuators with morphological computing using soft lithography. Microsyst. Nanoeng. 2019, 5, 44.
41. Nocentini, S.; Parmeggiani, C.; Martella, D.; Wiersma, D. S. Optically driven soft micro robotics. Adv. Opt. Mater. 2018, 6, 1800207.
42. Yarali, E.; Mirzaali, M. J.; Ghalayaniesfahani, A.; Accardo, A.; Diaz-Payno, P. J.; Zadpoor, A. A. 4D printing for biomedical applications. Adv. Mater. 2024, 36, e2402301.
43. Soleimanzadeh, H.; Rolfe, B.; Bodaghi, M.; Jamalabadi, M.; Zhang, X.; Zolfagharian, A. Sustainable robots 4D printing. Adv. Sustain. Syst. 2023, 7, 2300289.
44. Ding, A.; Tang, F.; Alsberg, E. 4D printing: a comprehensive review of technologies, materials, stimuli, design, and emerging applications. Chem. Rev. 2025, 125, 3663-771.
46. Ashwin, A.; Jafferson, J. State of the art direct ink writing (DIW) and experimental trial on DIW of HAp bio-ceramics. Mater. Today. Proc. 2021, 46, 1298-307.
47. Rocha, V. G.; Saiz, E.; Tirichenko, I. S.; García-Tuñón, E. Direct ink writing advances in multi-material structures for a sustainable future. J. Mater. Chem. A. 2020, 8, 15646-57.
48. Wei, H.; Zhang, Q.; Yao, Y.; Liu, L.; Liu, Y.; Leng, J. Direct-write fabrication of 4D active shape-changing structures based on a shape memory polymer and its nanocomposite. ACS. Appl. Mater. Interfaces. 2017, 9, 876-83.
49. Cheng, Y.; Chan, K. H.; Wang, X. Q.; et al. Direct-ink-write 3D printing of hydrogels into biomimetic soft robots. ACS. Nano. 2019, 13, 13176-84.
50. Zhang, P.; Lei, I. M.; Chen, G.; et al. Integrated 3D printing of flexible electroluminescent devices and soft robots. Nat. Commun. 2022, 13, 4775.
51. Sathies, T.; Senthil, P.; Anoop, M. S. A review on advancements in applications of fused deposition modelling process. Rapid. Prototyp. J. 2020, 26, 669-87.
52. Liu, Y.; Zhang, W.; Zhang, F.; et al. Shape memory behavior and recovery force of 4D printed laminated Miura-origami structures subjected to compressive loading. Compos. Part. B. Eng. 2018, 153, 233-42.
53. Bodaghi, M.; Damanpack, A.; Liao, W. Adaptive metamaterials by functionally graded 4D printing. Mater. Design. 2017, 135, 26-36.
54. Rajkumar, A. R.; Shanmugam, K. Additive manufacturing-enabled shape transformations via FFF 4D printing. J. Mater. Res. 2018, 33, 4362-76.
55. Hu, G. F.; Damanpack, A. R.; Bodaghi, M.; Liao, W. H. Increasing dimension of structures by 4D printing shape memory polymers via fused deposition modeling. Smart. Mater. Struct. 2017, 26, 125023.
56. Kačergis, L.; Mitkus, R.; Sinapius, M. Influence of fused deposition modeling process parameters on the transformation of 4D printed morphing structures. Smart. Mater. Struct. 2019, 28, 105042.
57. Yamamura, S.; Iwase, E. Hybrid hinge structure with elastic hinge on self-folding of 4D printing using a fused deposition modeling 3D printer. Mater. Design. 2021, 203, 109605.
58. Wang, F.; Luo, F.; Huang, Y.; Cao, X.; Yuan, C. 4D printing via multispeed fused deposition modeling. Adv. Mater. Technol. 2023, 8, 2201383.
59. Daminabo, S.; Goel, S.; Grammatikos, S.; Nezhad, H.; Thakur, V. Fused deposition modeling-based additive manufacturing (3D printing): techniques for polymer material systems. Mater. Today. Chem. 2020, 16, 100248.
60. Soleimanzadeh, H.; Bodaghi, M.; Jamalabadi, M.; Rolfe, B.; Zolfagharian, A. Rotary 4D printing of programmable metamaterials on sustainable 4D mandrel. Adv. Mater. Technol. 2026, 11, e01581.
61. Mohammadi, M.; Kouzani, A. Z.; Bodaghi, M.; Xiang, Y.; Zolfagharian, A. 3D-printed phase-change artificial muscles with autonomous vibration control. Adv. Mater. Technol. 2023, 8, 2300199.
62. Zakeri, S.; Vippola, M.; Levänen, E. A comprehensive review of the photopolymerization of ceramic resins used in stereolithography. Addit. Manuf. 2020, 35, 101177.
63. Crivello, J. V.; Reichmanis, E. Photopolymer materials and processes for advanced technologies. Chem. Mater. 2014, 26, 533-48.
64. Melchels, F. P.; Feijen, J.; Grijpma, D. W. A review on stereolithography and its applications in biomedical engineering. Biomaterials 2010, 31, 6121-30.
65. Zhao, T.; Yu, R.; Li, X.; et al. 4D printing of shape memory polyurethane via stereolithography. Eur. Polym. J. 2018, 101, 120-6.
66. Shan, W.; Chen, Y.; Hu, M.; Qin, S.; Liu, P. 4D printing of shape memory polymer via liquid crystal display (LCD) stereolithographic 3D printing. Mater. Res. Express. 2020, 7, 105305.
67. Piedra-Cascón, W.; Krishnamurthy, V. R.; Att, W.; Revilla-León, M. 3D printing parameters, supporting structures, slicing, and post-processing procedures of vat-polymerization additive manufacturing technologies: a narrative review. J. Dent. 2021, 109, 103630.
68. Ligon, S. C.; Liska, R.; Stampfl, J.; Gurr, M.; Mülhaupt, R. Polymers for 3D printing and customized additive manufacturing. Chem. Rev. 2017, 117, 10212-90.
69. Zhu, W.; Li, J.; Leong, Y. J.; et al. 3D-printed artificial microfish. Adv. Mater. 2015, 27, 4411-7.
70. Carlotti, M.; Mattoli, V. Functional materials for two-photon polymerization in microfabrication. Small 2019, 15, e1902687.
71. Fischer, J.; Wegener, M. Three-dimensional optical laser lithography beyond the diffraction limit. Laser. Photonics. Rev. 2013, 7, 22-44.
72. Lemma, E. D.; Spagnolo, B.; De Vittorio, M.; Pisanello, F. Studying cell mechanobiology in 3D: the two-photon lithography approach. Trends. Biotechnol. 2019, 37, 358-72.
73. Hu, Y.; Wang, Z.; Jin, D.; et al. Botanical-inspired 4D printing of hydrogel at the microscale. Adv. Funct. Mater. 2020, 30, 1907377.
74. Guo, Y.; Zhang, J.; Hu, W.; Khan, M. T. A.; Sitti, M. Shape-programmable liquid crystal elastomer structures with arbitrary three-dimensional director fields and geometries. Nat. Commun. 2021, 12, 5936.
75. Zhang, W.; Wang, H.; Wang, H.; et al. Structural multi-colour invisible inks with submicron 4D printing of shape memory polymers. Nat. Commun. 2021, 12, 112.
76. Maibohm, C.; Silvestre, O. F.; Borme, J.; Sinou, M.; Heggarty, K.; Nieder, J. B. Multi-beam two-photon polymerization for fast large area 3D periodic structure fabrication for bioapplications. Sci. Rep. 2020, 10, 8740.
77. Liu, X.; Gao, M.; Chen, J.; et al. Recent advances in stimuli-responsive shape-morphing hydrogels. Adv. Funct. Mater. 2022, 32, 2203323.
78. Shahsavan, H.; Yu, L.; Jákli, A.; Zhao, B. Smart biomimetic micro/nanostructures based on liquid crystal elastomers and networks. Soft. Matter. 2017, 13, 8006-22.
79. Hussain, M.; Jull, E. I. L.; Mandle, R. J.; Raistrick, T.; Hine, P. J.; Gleeson, H. F. Liquid crystal elastomers for biological applications. Nanomaterials 2021, 11, 813.
80. Petsch, S.; Rix, R.; Khatri, B.; et al. Smart artificial muscle actuators: liquid crystal elastomers with integrated temperature feedback. Sens. Actuators. A. Phys. 2015, 231, 44-51.
81. Jiang, H.; Chung, C.; Dunn, M. L.; Yu, K. 4D printing of liquid crystal elastomer composites with continuous fiber reinforcement. Nat. Commun. 2024, 15, 8491.
82. Zhou, X.; Chen, G.; Jin, B.; et al. Multimodal autonomous locomotion of liquid crystal elastomer soft robot. Adv. Sci. 2024, 11, e2402358.
83. Kotikian, A.; Watkins, A. A.; Bordiga, G.; et al. Liquid crystal elastomer lattices with thermally programmable deformation via multi-material 3D printing. Adv. Mater. 2024, 36, e2310743.
84. López-Díaz, A.; Vázquez, A. S.; Vázquez, E. Hydrogels in soft robotics: past, present, and future. ACS. Nano. 2024, 18, 20817-26.
85. Saroia, J.; Yanen, W.; Wei, Q.; Zhang, K.; Lu, T.; Zhang, B. A review on biocompatibility nature of hydrogels with 3D printing techniques, tissue engineering application and its future prospective. Bio. Des. Manuf. 2018, 1, 265-79.
86. Wang, R.; Yuan, C.; Cheng, J.; et al. Direct 4D printing of ceramics driven by hydrogel dehydration. Nat. Commun. 2024, 15, 758.
87. Zhang, M.; Pal, A.; Zheng, Z.; Gardi, G.; Yildiz, E.; Sitti, M. Hydrogel muscles powering reconfigurable micro-metastructures with wide-spectrum programmability. Nat. Mater. 2023, 22, 1243-52.
88. Huang, T. Y.; Huang, H. W.; Jin, D. D.; et al. Four-dimensional micro-building blocks. Sci. Adv. 2020, 6, eaav8219.
89. Ma, Z. C.; Zhang, Y. L.; Han, B.; et al. Femtosecond laser programmed artificial musculoskeletal systems. Nat. Commun. 2020, 11, 4536.
90. Huang, W.; Ding, Z.; Wang, C.; Wei, J.; Zhao, Y.; Purnawali, H. Shape memory materials. Mater. Today. 2010, 13, 54-61.
91. Rousseau, I. A. Challenges of shape memory polymers: a review of the progress toward overcoming SMP’s limitations. Polym. Eng. Sci. 2008, 48, 2075-89.
92. Rokaya, D.; Skallevold, H. E.; Srimaneepong, V.; et al. Shape memory polymeric materials for biomedical applications: an update. J. Compos. Sci. 2023, 7, 24.
93. Kong, Q.; Tan, Y.; Zhang, H.; et al. Mimosa-inspired body temperature-responsive shape memory polymer networks: high energy densities and multi-recyclability. Adv. Sci. 2024, 11, e2407596.
94. Li, H.; Zhang, B.; Ye, H.; et al. Reconfigurable 4D printing via mechanically robust covalent adaptable network shape memory polymer. Sci. Adv. 2024, 10, eadl4387.
95. Feng, S.; Peng, X.; Cui, J.; et al. Photo switchable 4D printing remotely controlled responsive and mimetic deformation shape memory polymer nanocomposites. Adv. Funct. Mater. 2024, 34, 2401431.
96. Ze, Q.; Kuang, X.; Wu, S.; et al. Magnetic shape memory polymers with integrated multifunctional shape manipulation. Adv. Mater. 2020, 32, e1906657.
97. Zolfagharian, A.; Gharaie, S.; Kouzani, A. Z.; et al. Silicon-based soft parallel robots 4D printing and multiphysics analysis. Smart. Mater. Struct. 2022, 31, 115030.
98. Zolfagharian, A.; Kaynak, A.; Kouzani, A. Closed-loop 4D-printed soft robots. Mater. Design. 2020, 188, 108411.
100. Deng, H.; Sattari, K.; Xie, Y.; Liao, P.; Yan, Z.; Lin, J. Laser reprogramming magnetic anisotropy in soft composites for reconfigurable 3D shaping. Nat. Commun. 2020, 11, 6325.
101. Zhang, Y.; Pan, C.; Liu, P.; et al. Coaxially printed magnetic mechanical electrical hybrid structures with actuation and sensing functionalities. Nat. Commun. 2023, 14, 4428.
102. Kim, Y.; Yuk, H.; Zhao, R.; Chester, S. A.; Zhao, X. Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 2018, 558, 274-9.
103. Akman, R.; Ramaraju, H.; Moore, S.; Verga, A.; Hollister, S. J. Manufacture dependent differential biodegradation of 3D printed shape memory polymers. Virtual. Phys. Prototyp. 2024, 19, e2371504.
104. Huang, R.; Liu, Z. The effect of swelling/deswelling cycles on the mechanical behaviors of the polyacrylamide hydrogels. Polymer 2024, 312, 127634.
105. Lin, S.; Liu, X.; Liu, J.; et al. Anti-fatigue-fracture hydrogels. Sci. Adv. 2019, 5, eaau8528.
106. Ng, W. L.; An, J.; Chua, C. K. Process, material, and regulatory considerations for 3D Printed medical devices and tissue constructs. Engineering 2024, 36, 146-66.
107. Song, X.; Sun, R.; Wang, R.; et al. Puffball-inspired microrobotic systems with robust payload, strong protection, and targeted locomotion for on-demand drug delivery. Adv. Mater. 2022, 34, e2204791.
108. Zhang, M.; Liu, Y.; Deng, C.; et al. Light-driven lattice soft microrobot with multimodal locomotion. Nat. Commun. 2025, 16, 8059.
109. Li, D.; Liu, C.; Yang, Y.; Wang, L.; Shen, Y. Micro-rocket robot with all-optic actuating and tracking in blood. Light. Sci. Appl. 2020, 9, 84.
110. Huang, Y.; Yu, Q.; Su, C.; Jiang, J.; Chen, N.; Shao, H. Light-responsive soft actuators: mechanism, materials, fabrication, and applications. Actuators 2021, 10, 298.
111. Chen, M.; Hou, Y.; An, R.; Qi, H. J.; Zhou, K. 4D printing of reprogrammable liquid crystal elastomers with synergistic photochromism and photoactuation. Adv. Mater. 2024, 36, e2303969.
112. Lugger, S. J. D.; Ceamanos, L.; Mulder, D. J.; Sánchez-Somolinos, C.; Schenning, A. P. H. J. 4D printing of supramolecular liquid crystal elastomer actuators fueled by light. Adv. Mater. Technol. 2023, 8, 2201472.
114. He, Q.; Wang, Z.; Wang, Y.; Song, Z.; Cai, S. Recyclable and self-repairable fluid-driven liquid crystal elastomer actuator. ACS. Appl. Mater. Interfaces. 2020, 12, 35464-74.
115. Aksoy, B.; Shea, H. Multistable shape programming of variable-stiffness electromagnetic devices. Sci. Adv. 2022, 8, eabk0543.
116. Ren, L.; He, Y.; Wang, B.; et al. 4D printed self-sustained soft crawling machines fueled by constant thermal field. Adv. Funct. Mater. 2024, 34, 2400161.
117. Wu, S.; Hong, Y.; Zhao, Y.; Yin, J.; Zhu, Y. Caterpillar-inspired soft crawling robot with distributed programmable thermal actuation. Sci. Adv. 2023, 9, eadf8014.
118. Zhao, Y.; Hong, Y.; Li, Y.; et al. Physically intelligent autonomous soft robotic maze escaper. Sci. Adv. 2023, 9, eadi3254.
119. Li, M.; Pal, A.; Aghakhani, A.; Pena-Francesch, A.; Sitti, M. Soft actuators for real-world applications. Nat. Rev. Mater. 2022, 7, 235-49.
120. Subeshan, B.; Baddam, Y.; Asmatulu, E. Current progress of 4D-printing technology. Prog. Addit. Manuf. 2021, 6, 495-516.
121. Zhou, H.; Mayorga-Martinez, C. C.; Pané, S.; Zhang, L.; Pumera, M. Magnetically driven micro and nanorobots. Chem. Rev. 2021, 121, 4999-5041.
122. Romeis, D.; Saphiannikova, M. Effective magnetic susceptibility in magnetoactive composites. J. Magn. Magn. Mater. 2023, 565, 170197.
123. Nadzharyan, T. A.; Shamonin, M.; Kramarenko, E. Y. Theoretical modeling of magnetoactive elastomers on different scales: a state-of-the-art review. Polymers 2022, 14, 4096.
124. Chung, G.; Quang, H. L.; Kim, J. H.; Yoo, J.; Seol, S. K.; Park, Y. Bioinspired, rapidly responsive magnetically tunable stiffness metamaterials. Adv. Mater. 2025, 37, e2505880.
125. Wu, S.; Liu, Y.; Zhang, Y.; et al. High-load shape memory microgripper with embedded resistive heating and magnetic actuation. Adv. Funct. Mater. 2025, 35, 2421798.
126. Li, Z.; Li, C.; Dong, L.; Zhao, J. A review of microrobot’s system: towards system integration for autonomous actuation in vivo. Micromachines 2021, 12, 1249.
127. Han, D.; Farino, C.; Yang, C.; et al. Soft robotic manipulation and locomotion with a 3D printed electroactive hydrogel. ACS. Appl. Mater. Interfaces. 2018, 10, 17512-8.
128. Wang, N.; Xiao, X.; Liu, T.; Zhang, C.; Gu, M.; Qi, X. 4D printing of electrically activated reversible deformation composite actuators. Adv. Mater. Technol. 2025, 10, 2401345.
129. Morales Ferrer, J. M.; Sánchez Cruz, R. E.; Caplan, S.; van Rees, W. M.; Boley, J. W. Multiscale heterogeneous polymer composites for high stiffness 4D printed electrically controllable multifunctional structures. Adv. Mater. 2024, 36, e2307858.
130. Zhang, Z.; Shi, Z.; Ahmed, D. SonoTransformers: transformable acoustically activated wireless microscale machines. Proc. Natl. Acad. Sci. U. S. A. 2024, 121, e2314661121.
131. Nwokonkwo, O.; Mensah, P.; Ibekwe, S.; Li, G. Numerical study of the heating effects of high intensity focused ultrasound on shape memory polymer fiber reinforced self-healing polymer composite. Smart. Mater. Struct. 2021, 30, 085026.
132. Hao, B.; Wang, X.; Dong, Y.; et al. Focused ultrasound enables selective actuation and Newton-level force output of untethered soft robots. Nat. Commun. 2024, 15, 5197.
133. Koetting, M. C.; Peters, J. T.; Steichen, S. D.; Peppas, N. A. Stimulus-responsive hydrogels: theory, modern advances, and applications. Mater. Sci. Eng. R. Rep. 2015, 93, 1-49.
134. Hippler, M.; Weißenbruch, K.; Richler, K.; et al. Mechanical stimulation of single cells by reversible host-guest interactions in 3D microscaffolds. Sci. Adv. 2020, 6, eabc2648.
135. Cecchini, L.; Mariani, S.; Ronzan, M.; Mondini, A.; Pugno, N. M.; Mazzolai, B. 4D printing of humidity-driven seed inspired soft robots. Adv. Sci. 2023, 10, e2205146.
136. Xin, C.; Jin, D.; Hu, Y.; et al. Environmentally adaptive shape-morphing microrobots for localized cancer cell treatment. ACS. Nano. 2021, 15, 18048-59.
137. Hu, X.; Ge, Z.; Wang, X.; Jiao, N.; Tung, S.; Liu, L. Multifunctional thermo-magnetically actuated hybrid soft millirobot based on 4D printing. Compos. Part. B. Eng. 2022, 228, 109451.
138. Liu, G.; Zhang, X.; Chen, X.; et al. Additive manufacturing of structural materials. Mater. Sci. Eng. R. Rep. 2021, 145, 100596.
139. Gazzaniga, A.; Foppoli, A.; Cerea, M.; et al. Towards 4D printing in pharmaceutics. Int. J. Pharm. X. 2023, 5, 100171.
140. Bellinger, A. M.; Jafari, M.; Grant, T. M.; et al. Oral, ultra-long-lasting drug delivery: application toward malaria elimination goals. Sci. Transl. Med. 2016, 8, 365ra157.
141. Ghosh, A.; Li, L.; Xu, L.; et al. Gastrointestinal-resident, shape-changing microdevices extend drug release in vivo. Sci. Adv. 2020, 6, eabb4133.
142. Khademhosseini, A.; Langer, R. A decade of progress in tissue engineering. Nat. Protoc. 2016, 11, 1775-81.
143. Kalashnikov, N.; Moraes, C. Morphodynamic tissues via integrated programmable shape memory actuators. Adv. Funct. Mater. 2019, 29, 1903327.
144. Roy, A.; Zhang, Z.; Eiken, M. K.; Shi, A.; Pena-Francesch, A.; Loebel, C. Programmable tissue folding patterns in structured hydrogels. Adv. Mater. 2024, 36, e2300017.
145. Lin, C.; Lv, J.; Li, Y.; et al. 4D-printed biodegradable and remotely controllable shape memory occlusion devices. Adv. Funct. Mater. 2019, 29, 1906569.
146. Miao, S.; Cui, H.; Nowicki, M.; et al. Stereolithographic 4D bioprinting of multiresponsive architectures for neural engineering. Adv. Biosyst. 2018, 2, 1800101.
147. You, D.; Chen, G.; Liu, C.; et al. 4D printing of multi-responsive membrane for accelerated in vivo bone healing via remote regulation of stem cell fate. Adv. Funct. Mater. 2021, 31, 2103920.
148. Zeenat, L.; Zolfagharian, A.; Bera, A. K.; Adhikari, J.; Pati, F. 4D bioprinting of self-forming tubular structures for enhanced vascular tissue engineering. Int. J. Biol. Macromol. 2025, 324, 147088.
149. Zhao, W.; Yue, C.; Liu, L.; Liu, Y.; Leng, J. Research progress of shape memory polymer and 4D printing in biomedical application. Adv. Healthc. Mater. 2023, 12, e2201975.
150. Maity, N.; Mansour, N.; Chakraborty, P.; Bychenko, D.; Gazit, E.; Cohn, D. A personalized multifunctional 3D printed shape memory-displaying, drug releasing tracheal stent. Adv. Funct. Mater. 2021, 31, 2108436.
151. Lin, C.; Huang, Z.; Wang, Q.; et al. Mass-producible near-body temperature-triggered 4D printed shape memory biocomposites and their application in biomimetic intestinal stents. Compos. Part. B. Eng. 2023, 256, 110623.
152. Hegde, C.; Su, J.; Tan, J. M. R.; He, K.; Chen, X.; Magdassi, S. Sensing in soft robotics. ACS. Nano. 2023, 17, 15277-307.
153. Ali, M.; Alam, F.; Fah, Y. F.; Shiryayev, O.; Vahdati, N.; Butt, H. 4D printed thermochromic Fresnel lenses for sensing applications. Compos. Part. B. Eng. 2022, 230, 109514.
154. Wu, H.; Zhang, X.; Ma, Z.; et al. A material combination concept to realize 4D printed products with newly emerging property/functionality. Adv. Sci. 2020, 7, 1903208.
155. Huang, H.; Liao, C.; Zou, M.; et al. Four-dimensional printing of a fiber-tip multimaterial microcantilever as a magnetic field sensor. ACS. Photonics. 2023, 10, 1916-24.
156. Kim, K.; Guo, Y.; Bae, J.; et al. 4D printing of hygroscopic liquid crystal elastomer actuators. Small 2021, 17, e2100910.
157. Li, L.; Fan, X.; Xu, W.; et al. Bioinspired 3D-nanoprinted optical sensilla for bidirectional respiratory monitoring. Nano. Lett. 2025, 25, 5452-60.
158. Qin, J.; Li, J.; Yang, G.; et al. A bio-inspired magnetic soft robotic fish for efficient solar-energy driven water purification. Small. Methods. 2025, 9, e2400880.
159. Liu, B.; Dong, B.; Xin, C.; et al. 4D direct laser writing of submerged structural colors at the microscale. Small 2023, 19, e2204630.
160. Zhang, B.; Li, H.; Cheng, J.; et al. Mechanically robust and UV-curable shape-memory polymers for digital light processing based 4D printing. Adv. Mater. 2021, 33, e2101298.
161. Folio, D.; Ferreira, A. Two-dimensional robust magnetic resonance navigation of a ferromagnetic microrobot using Pareto optimality. IEEE. Trans. Robot. 2017, 33, 583-93.
162. Li, N.; Fei, P.; Tous, C.; et al. Human-scale navigation of magnetic microrobots in hepatic arteries. Sci. Robot. 2024, 9, eadh8702.
163. Yang, L.; Zhang, M.; Yang, Z.; Yang, H.; Zhang, L. Mobile ultrasound tracking and magnetic control for long-distance endovascular navigation of untethered miniature robots against pulsatile flow. Adv. Intell. Syst. 2022, 4, 2100144.
164. Del Campo Fonseca, A.; Glück, C.; Droux, J.; et al. Ultrasound trapping and navigation of microrobots in the mouse brain vasculature. Nat. Commun. 2023, 14, 5889.
165. Li, D.; Dong, D.; Lam, W.; Xing, L.; Wei, T.; Sun, D. Automated in vivo navigation of magnetic-driven microrobots using OCT imaging feedback. IEEE. Trans. Biomed. Eng. 2020, 67, 2349-58.
166. Li, T.; Yu, S.; Sun, B.; et al. Bioinspired claw-engaged and biolubricated swimming microrobots creating active retention in blood vessels. Sci. Adv. 2023, 9, eadg4501.
167. Go, G.; Yoo, A.; Nguyen, K. T.; et al. Multifunctional microrobot with real-time visualization and magnetic resonance imaging for chemoembolization therapy of liver cancer. Sci. Adv. 2022, 8, eabq8545.







