REFERENCES
1. Akhtar, Z. B. Advancements within molecular engineering for regenerative medicine and biomedical applications an investigation analysis towards a computing retrospective. j.electron.electromedical.eng.med.inform. 2024, 6, 54-72.
2. Butler, D. L. Evolution of functional tissue engineering for tendon and ligament repair. J. Tissue. Eng. Regen. Med. 2022, 16, 1091-108.
3. Vrana, N. E.; Gupta, S.; Mitra, K.; et al. From 3D printing to 3D bioprinting: the material properties of polymeric material and its derived bioink for achieving tissue specific architectures. Cell. Tissue. Bank. 2022, 23, 417-40.
4. Di Marzio, N.; Eglin, D.; Serra, T.; Moroni, L. Bio-Fabrication: Convergence of 3D bioprinting and nano-biomaterials in tissue engineering and regenerative medicine. Front. Bioeng. Biotechnol. 2020, 8, 326.
5. Fatimi, A.; Okoro, O. V.; Podstawczyk, D.; Siminska-Stanny, J.; Shavandi, A. Natural hydrogel-based bio-inks for 3d bioprinting in tissue engineering: a review. Gels 2022, 8, 179.
6. Yang, Z.; Yi, P.; Liu, Z.; et al. Stem cell-laden hydrogel-based 3D bioprinting for bone and cartilage tissue engineering. Front. Bioeng. Biotechnol. 2022, 10, 865770.
7. Khalil, H. P. S. A.; Jummaat, F.; Yahya, E. B.; et al. A review on micro- to nanocellulose biopolymer scaffold forming for tissue engineering applications. Polymers. (Basel). 2020, 12, 2043.
8. Tamo, A. K. Nanocellulose-based hydrogels as versatile materials with interesting functional properties for tissue engineering applications. J. Mater. Chem. B. 2024, 12, 7692-759.
9. Garcia, K. R.; Beck, R. C. R.; Brandalise, R. N.; Dos Santos, V.; Koester, L. S. Nanocellulose, the green biopolymer trending in pharmaceuticals: a patent review. Pharmaceutics 2024, 16, 145.
10. Lin, L.; Jiang, S.; Yang, J.; et al. Application of 3D-bioprinted nanocellulose and cellulose derivative-based bio-inks in bone and cartilage tissue engineering. Int. J. Bioprint. 2023, 9, 637.
11. Lameirinhas, N. S.; Teixeira, M. C.; Carvalho, J. P. F.; et al. Nanofibrillated cellulose/gellan gum hydrogel-based bioinks for 3D bioprinting of skin cells. Int. J. Biol. Macromol. 2023, 229, 849-60.
12. Wu, Y.; Lin, Z. Y.; Wenger, A. C.; Tam, K. C.; Tang, X. 3D bioprinting of liver-mimetic construct with alginate/cellulose nanocrystal hybrid bioink. Bioprinting 2018, 9, 1-6.
13. Grishkewich, N.; Mohammed, N.; Tang, J.; Tam, K. C. Recent advances in the application of cellulose nanocrystals. Curr. Opin. Colloid. Interface. Sci. 2017, 29, 32-45.
14. Lu, Z.; Zhang, H.; Toivakka, M.; Xu, C. Current progress in functionalization of cellulose nanofibers (CNFs) for active food packaging. Int. J. Biol. Macromol. 2024, 267, 131490.
15. Khalid, M. Y.; Arif, Z. U.; Noroozi, R.; Hossain, M.; Ramakrishna, S.; Umer, R. 3D/4D printing of cellulose nanocrystals-based biomaterials: additives for sustainable applications. Int. J. Biol. Macromol. 2023, 251, 126287.
16. Lamm, M. E.; Li, K.; Qian, J.; et al. Recent advances in functional materials through cellulose nanofiber templating. Adv. Mater. 2021, 33, e2005538.
17. Rahman, M. S.; Hasan, M. S.; Nitai, A. S.; et al. Recent developments of carboxymethyl cellulose. Polymers. (Basel). 2021, 13, 1345.
18. Petitjean, N.; Canadas, P.; Royer, P.; Noël, D.; Le Floc'h, S. Cartilage biomechanics: from the basic facts to the challenges of tissue engineering. J. Biomed. Mater. Res. A. 2023, 111, 1067-89.
19. Ahmad Hariza, A. M.; Mohd Yunus, M. H.; Fauzi, M. B.; Murthy, J. K.; Tabata, Y.; Hiraoka, Y. The fabrication of gelatin-elastin-nanocellulose composite bioscaffold as a potential acellular skin substitute. Polymers. (Basel). 2023, 15, 779.
20. Singh, A., Kumari, K., Kundu, P. P. Nanocellulose biocomposites for bone tissue engineering. In Handbook of Nanocelluloses; Barhoum, A., Eds.; Springer International Publishing, 2022; pp 597-647. DOI: 10.1007/978-3-030-89621-8_39.
21. Decante, G.; Costa, J. B.; Silva-Correia, J.; Collins, M. N.; Reis, R. L.; Oliveira, J. M. Engineering bioinks for 3D bioprinting. Biofabrication 2021, 13, 032001.
22. Roman, M. Cellulose nanocrystals.jpg. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Cellulose_nanocrystals.jpg. (accessed 2026-1-13).
23. DataBase Center for Life Science DBCLS. 202406 Cellulose Nanofiber.svg. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:202406_Cellulose_Nanofiber.svg. (accessed 2026-1-13).
24. Song, E.; Yeon Kim, S.; Chun, T.; Byun, H. J.; Lee, Y. M. Collagen scaffolds derived from a marine source and their biocompatibility. Biomaterials 2006, 27, 2951-61.
25. Gurumurthy, B.; Janorkar, A. V. Improvements in mechanical properties of collagen-based scaffolds for tissue engineering. Curr. Opin. Biomed. Eng. 2021, 17, 100253.
26. Mienaltowski, M. J.; Gonzales, N. L.; Beall, J. M.; Pechanec, M. Y. Basic structure, physiology, and biochemistry of connective tissues and extracellular matrix collagens. Adv. Exp. Med. Biol. 2021, 1348, 5-43.
27. Salvatore, L.; Gallo, N.; Natali, M. L.; Terzi, A.; Sannino, A.; Madaghiele, M. Mimicking the hierarchical organization of natural collagen: toward the development of ideal scaffolding material for tissue regeneration. Front. Bioeng. Biotechnol. 2021, 9, 644595.
28. Kane, R. J.; Roeder, R. K. Effects of hydroxyapatite reinforcement on the architecture and mechanical properties of freeze-dried collagen scaffolds. J. Mech. Behav. Biomed. Mater. 2012, 7, 41-9.
29. Kokol, V.; Pottathara, Y. B.; Mihelčič, M.; Perše, L. S. Rheological properties of gelatine hydrogels affected by flow- and horizontally-induced cooling rates during 3D cryo-printing. Colloids. Surf. A. Physicochem. Eng. Asp. 2021, 616, 126356.
30. Madaninasab, P.; Mohammadi, M.; Labbaf, S. Electroconductive gelatin/alginate/ graphene hydrogel based scaffold for neural tissue repair. Macromol. Mater. Eng. 2024, 310, 2400229.
31. Rezapourian, M.; Kamboj, N.; Jasiuk, I.; Hussainova, I. Biomimetic design of implants for long bone critical-sized defects. J. Mech. Behav. Biomed. Mater. 2022, 134, 105370.
32. Roohani-Esfahani, S. I.; Newman, P.; Zreiqat, H. Design and fabrication of 3D printed scaffolds with a mechanical strength comparable to cortical bone to repair large bone defects. Sci. Rep. 2016, 6, 19468.
33. Hu, X.; Man, Y.; Li, W.; et al. 3D bio-printing of CS/Gel/HA/Gr hybrid osteochondral scaffolds. Polymers. (Basel). 2019, 11, 1601.
34. Murab, S.; Gupta, A.; Włodarczyk-Biegun, M. K.; et al. Alginate based hydrogel inks for 3D bioprinting of engineered orthopedic tissues. Carbohydr. Polym. 2022, 296, 119964.
35. Sönmezer Açıkgöz, D.; Latifoğlu, F.; Toprak, G.; Baran, M. Applications of a biocompatible alginate/pericardial fluid-based hydrogel for the production of a bioink in tissue engineering. Biotechnol. Appl. Biochem. 2025, 72, 777-92.
36. Hu, T.; Cai, P.; Xia, C. MXene reinforced microporous bacterial cellulose/sodium alginate dual crosslinked cryogel for bone tissue engineering. Biomed. Mater. 2024, 19.
37. Santhamoorthy, M.; Kim, S. C. A review of the development of biopolymer hydrogel-based scaffold materials for drug delivery and tissue engineering applications. Gels 2025, 11, 178.
38. Getya, D.; Gitsov, I. Synthesis and applications of hybrid polymer networks based on renewable natural macromolecules. Molecules 2023, 28, 6030.
39. Arıcı, Ş., Ege, D. Effect of gelatin concentration on the mechanical properties and in vitro degradation behaviour of gelatin/carboxymethyl cellulose-based 3D printed scaffolds. MRS. Advances. 2024, 9, 1598-604.
40. Szychlinska, M. A.; Bucchieri, F.; Fucarino, A.; Ronca, A.; D’Amora, U. Three-dimensional bioprinting for cartilage tissue engineering: insights into naturally-derived bioinks from land and marine sources. J. Funct. Biomater. 2022, 13, 118.
41. Thirumala, S.; Gimble, J. M.; Devireddy, R. V. Methylcellulose based thermally reversible hydrogel system for tissue engineering applications. Cells 2013, 2, 460-75.
42. Filip, D.; Macocinschi, D.; Zaltariov, M. F.; et al. Hydroxypropyl cellulose/pluronic-based composite hydrogels as biodegradable mucoadhesive scaffolds for tissue engineering. Gels 2022, 8, 519.
43. Barhoum, A.; Rastogi, V. K.; Mahur, B. K.; Rastogi, A.; Abdel-haleem, F. M.; Samyn, P. Nanocelluloses as new generation materials: natural resources, structure-related properties, engineering nanostructures, and technical challenges. Mater. Today. Chem. 2022, 26, 101247.
44. Ng, L. Y.; Wong, T. J.; Ng, C. Y.; Amelia, C. K. M. A review on cellulose nanocrystals production and characterization methods from Elaeis guineensis empty fruit bunches. Arabian. J. Chem. 2021, 14, 103339.
45. Alves, L.; Ferraz, E.; Lourenço, A. F.; Ferreira, P. J.; Rasteiro, M. G.; Gamelas, J. A. F. Tuning rheology and aggregation behaviour of TEMPO-oxidised cellulose nanofibrils aqueous suspensions by addition of different acids. Carbohydr. Polym. 2020, 237, 116109.
46. Li, Z.; Liu, H.; Liao, Y.; et al. Design and properties of alginate/gelatin/cellulose nanocrystals interpenetrating polymer network composite hydrogels based on in situ cross-linking. Eur. Polym. J. 2023, 201, 112556.
47. Athukoralalage, S. S.; Balu, R.; Dutta, N. K.; Roy Choudhury, N. 3D bioprinted nanocellulose-based hydrogels for tissue engineering applications: a brief review. Polymers. (Basel). 2019, 11, 898.
48. Shi, Y.; Jiao, H.; Sun, J.; et al. Functionalization of nanocellulose applied with biological molecules for biomedical application: a review. Carbohydr. Polym. 2022, 285, 119208.
49. Zhao, D.; Zhu, Y.; Cheng, W.; Chen, W.; Wu, Y.; Yu, H. Cellulose-based flexible functional materials for emerging intelligent electronics. Adv. Mater. 2021, 33, e2000619.
50. Raja, I. S.; Kim, B.; Han, D. W. Nanofibrous material-reinforced printable ink for enhanced cell proliferation and tissue regeneration. Bioengineering. (Basel). 2024, 11, 363.
51. Kamdem Tamo, A.; Doench, I.; Walter, L.; et al. Development of bioinspired functional chitosan/cellulose nanofiber 3D hydrogel constructs by 3D printing for application in the engineering of mechanically demanding tissues. Polymers. (Basel). 2021, 13, 1663.
52. Wang, X.; Wang, Q.; Xu, C. Nanocellulose-based inks for 3D bioprinting: key aspects in research development and challenging perspectives in applications-a mini review. Bioengineering. (Basel). 2020, 7, 40.
53. Heise, K.; Kontturi, E.; Allahverdiyeva, Y.; et al. Nanocellulose: recent fundamental advances and emerging biological and biomimicking applications. Adv. Mater. 2021, 33, e2004349.
54. Lee, D. H.; Lee, Y. B.; Park, H. S.; Jang, Y. J.; Kim, Y. C.; Bhang, S. H. Carboxymethyl cellulose-polylactic acid particles for inhibiting anoikis and enhancing wound healing efficacy of human mesenchymal stem cells. Bioeng. Transl. Med. 2025, 10, e70003.
55. Samulin Erdem, J.; Alswady-Hoff, M.; Ervik, T. K. Skare, Ø.; Ellingsen, D. G.; Zienolddiny, S. Cellulose nanocrystals modulate alveolar macrophage phenotype and phagocytic function. Biomaterials 2019, 203, 31-42.
56. Hua, K.; Ålander, E.; Lindström, T.; Mihranyan, A.; Strømme, M.; Ferraz, N. Surface chemistry of nanocellulose fibers directs monocyte/macrophage response. Biomacromolecules 2015, 16, 2787-95.
57. Hua, K.; Strømme, M.; Mihranyan, A.; Ferraz, N. Nanocellulose from green algae modulates the in vitro inflammatory response of monocytes/macrophages. Cellulose 2015, 22, 3673-88.
58. Yaya, L.; Cong, Y.; Lianping, S.; Qiuyang, C.; Shitao, Y.; Lu, L. Rough-surface hydroxyl-group-rich hollow mesoporous silica nanospheres with nanocellulose as a template to improve the oxidation stability of bio-oil. Biomass. Bioenergy. 2021, 154, 106243.
59. Aimonen, K.; Suhonen, S.; Hartikainen, M.; et al. Role of surface chemistry in the in vitro lung response to nanofibrillated cellulose. Nanomaterials. (Basel). 2021, 11.
60. Dhar, P.; Tarafder, D.; Kumar, A.; Katiyar, V. Effect of cellulose nanocrystal polymorphs on mechanical, barrier and thermal properties of poly(lactic acid) based bionanocomposites. RSC. Adv. 2015, 5, 60426-40.
61. Gupta, A.; Khodayari, A.; van Duin, A. C. T.; Hirn, U.; Van Vuure, A. W.; Seveno, D. Cellulose nanocrystals: tensile strength and failure mechanisms revealed using reactive molecular dynamics. Biomacromolecules 2022, 23, 2243-54.
62. Zhang, S.; Jia, Z.; Zhang, Y.; Wu, G. Electrospun Fe0.64Ni0.36/MXene/CNFs nanofibrous membranes with multicomponent heterostructures as flexible electromagnetic wave absorbers. Nano. Res. 2022, 5368.
63. Ge, Y. W.; Chu, M.; Zhu, Z. Y.; et al. Nacre-inspired magnetically oriented micro-cellulose fibres/nano-hydroxyapatite/chitosan layered scaffold enhances pro-osteogenesis and angiogenesis. Mater. Today. Bio. 2022, 16, 100439.
64. Yu, X.; Li, X.; Kan, L.; et al. Double network microcrystalline cellulose hydrogels with high mechanical strength and biocompatibility for cartilage tissue engineering scaffold. Int. J. Biol. Macromol. 2023, 238, 124113.
65. Liu, Q.; Liu, J.; Qin, S.; Pei, Y.; Zheng, X.; Tang, K. High mechanical strength gelatin composite hydrogels reinforced by cellulose nanofibrils with unique beads-on-a-string morphology. Int. J. Biol. Macromol. 2020, 164, 1776-84.
66. Huang, C.; Hao, N.; Bhagia, S.; et al. Porous artificial bone scaffold synthesized from a facile in situ hydroxyapatite coating and crosslinking reaction of crystalline nanocellulose. Materialia 2018, 4, 237-46.
67. Ashby, M. F. The properties of foams and lattices. Philos. Transact. A. Math. Phys. Eng. Sci. 2006, 364, 15-30.
68. Huang, J.; Li, L. 3D printing of cellulose-based biomaterials: a review. BME. Horiz. 2025, 3, 138.
69. Barrulas, R. V.; Corvo, M. C. Rheology in product development: an insight into 3D printing of hydrogels and aerogels. Gels 2023, 9, 986.
70. Xu, J.; Wang, P.; Yuan, B.; Zhang, H. Rheology of cellulose nanocrystal and nanofibril suspensions. Carbohydr. Polym. 2024, 324, 121527.
71. Lee, S. C.; Gillispie, G.; Prim, P.; Lee, S. J. Physical and chemical factors influencing the printability of hydrogel-based extrusion bioinks. Chem. Rev. 2020, 120, 10834-86.
72. Schwab, A.; Levato, R.; D'Este, M.; Piluso, S.; Eglin, D.; Malda, J. Printability and shape fidelity of bioinks in 3D bioprinting. Chem. Rev. 2020, 120, 11028-55.
73. Walters-Shumka, J. P.; Cheng, C.; Jiang, F.; Willerth, S. M. Recent advances in modeling tissues using 3D bioprinted nanocellulose bioinks. ACS. Biomater. Sci. Eng. 2025, 11, 1882-96.
74. Yapar, Ã. 3D bioprinting of cellulosic structures for versatile applications. In Additive Manufacturing in Multidisciplinary Cooperation and Production; Drstvensek, I., Pal, S., Ihan Hren, N., Eds.; Springer Tracts in Additive Manufacturing; Springer International Publishing, 2023; pp 79-102.
75. Bonetti, L.; De Nardo, L.; Farè, S. Thermo-responsive methylcellulose hydrogels: from design to applications as smart biomaterials. Tissue. Eng. Part. B. Rev. 2021, 27, 486-513.
76. Mallakpour, S.; Tukhani, M.; Hussain, C. M. Recent advancements in 3D bioprinting technology of carboxymethyl cellulose-based hydrogels: utilization in tissue engineering. Adv. Colloid. Interface. Sci. 2021, 292, 102415.
77. Szustak, M.; Gendaszewska-Darmach, E. Nanocellulose-based scaffolds for chondrogenic differentiation and expansion. Front. Bioeng. Biotechnol. 2021, 9, 736213.
78. Chang, C.; Zhang, L. Cellulose-based hydrogels: present status and application prospects. Carbohydr. Polym. 2011, 84, 40-53.
79. Abalymov, A.; Pinchasik, B. E.; Akasov, R. A.; Lomova, M.; Parakhonskiy, B. V. Strategies for anisotropic fibrillar hydrogels: design, cell alignment, and applications in tissue engineering. Biomacromolecules 2023, 24, 4532-52.
80. Echeverria Molina, M. I.; Malollari, K. G.; Komvopoulos, K. Design challenges in polymeric scaffolds for tissue engineering. Front. Bioeng. Biotechnol. 2021, 9, 617141.
81. Elçin, A. E. In vitro and in vivo degradation of oxidized acetyl- and ethyl-cellulose sponges. Artif. Cells. Blood. Substit. Immobil. Biotechnol. 2006, 34, 407-18.
82. Sannino, A.; Demitri, C.; Madaghiele, M. Biodegradable cellulose-based hydrogels: design and applications. Materials 2009, 2, 353-73.
83. Damiyan, B. M. T., Kalarikkal, N., Ullah, M. W. Functionalisation of nanocellulose for tissue engineering applications. In Nanocellulose-based Hybrid Systems for Tissue Engineering; Sreedharan, M., Thomas, S., Kalarikkal, N., Vijayamma, R., Grohens, Y., Yang, G., Eds.; Royal Society of Chemistry, 2024; pp 198-221.
84. Yang, Y.; Lu, Y. T.; Zeng, K.; Heinze, T.; Groth, T.; Zhang, K. Recent progress on cellulose-based ionic compounds for biomaterials. Adv. Mater. 2021, 33, e2000717.
85. Li, K.; Jin, S.; Wei, Y.; et al. Bioinspired hyperbranched protein adhesive based on boronic acid-functionalized cellulose nanofibril and water-soluble polyester. Compos. Part. B-Eng. 2021, 219, 108943.
86. Zhang, S.; Liu, L.; Yu, J.; Fan, Y. A review of cellulose amination in homogeneous and heterogeneous systems and their applications. Ind. Crops. Prod. 2024, 222, 119500.
87. Sojdeh, S.; Panjipour, A.; Yaghmour, A.; Arabpour, Z.; Djalilian, A. R. Click chemistry-based hydrogels for tissue engineering. Gels 2025, 11, 724.
88. Cui, S.; Zhang, S.; Coseri, S. An injectable and self-healing cellulose nanofiber-reinforced alginate hydrogel for bone repair. Carbohydr. Polym. 2023, 300, 120243.
89. Xie, H.; Shi, G.; Wang, R.; et al. Bioinspired wet adhesive carboxymethyl cellulose-based hydrogel with rapid shape adaptability and antioxidant activity for diabetic wound repair. Carbohydr. Polym. 2024, 334, 122014.
90. Liu, Y.; Ahmed, S.; Sameen, D. E.; et al. A review of cellulose and its derivatives in biopolymer-based for food packaging application. Trends. Food. Sci. Technol. 2021, 112, 532-46.
91. Tudoroiu, E. E.; Dinu-Pîrvu, C. E.; Albu Kaya, M. G.; et al. An overview of cellulose derivatives-based dressings for wound-healing management. Pharmaceuticals. (Basel). 2021, 14, 1215.
92. Iglesias-mejuto, A.; Malandain, N.; Ferreira-gonçalves, T.; et al. Cellulose-in-cellulose 3D-printed bioaerogels for bone tissue engineering. Cellulose 2023, 31, 515-34.
93. Lerche, J. Physicochemical properties of cellulose nanocrystal-reinforced hydroxypropyl cellulose hydrogels. 2024. https://aaltodoc.aalto.fi/items/81dc7336-de6f-4c49-9c4d-90e69a1429dc. (accessed 2026-1-13).
94. Maharani, A.; Kususumaningrum, W. B.; Puspitasari, A.; et al. Enhancing biomechanical and biocompatibility properties of hydroxyapatite and nanocellulose-bone scaffold for biomedical application. https://papers.ssrn.com/sol3/Delivery.cfm/75b75e26-cc86-470c-b902-0f667072eca2-MECA.pdf?abstractid=4910323&mirid=1&type=2. (accessed 2026-1-13).
95. Anil, S., Thomas, N. G., Sweety, V. K., Varghese, N. Bone and cartilage tissue engineering scaffolds with nanocellulose. In Nanocellulose-based Hybrid Systems for Tissue Engineering; Sreedharan, M., Thomas, S., Kalarikkal, N., Vijayamma, R., Grohens, Y., Yang, G., Eds.; Royal Society of Chemistry, 2024; pp 302-23.
96. Thomas, N. G., Thomas, G. V., Kavya, S., et al. Marine biopolymers in tissue engineering applications. In Marine Biopolymers; Elsevier, 2025; pp 491-527.
97. Alimardani, Y.; Mirzakhani, E.; Ansari, F.; Pourjafar, H.; Sadeghi, N. Prospective and applications of bacterial nanocellulose in dentistry. Cellulose 2024, 31, 7819-39.
98. Niknafs, B.; Meskaraf-Asadabadi, M.; Hamdi, K.; Ghanbari, E. Incorporating bioactive glass nanoparticles in silk fibroin/bacterial nanocellulose composite scaffolds improves their biological and osteogenic properties for bone tissue engineering applications. Int. J. Biol. Macromol. 2024, 266, 131167.
99. Daculsi, G.; Fellah, B.; Miramond, T.; Durand, M. Osteoconduction, osteogenicity, osteoinduction, what are the fundamental properties for a smart bone substitutes. IRBM 2013, 34, 346-8.
100. Ong, X. R.; Chen, A. X.; Li, N.; Yang, Y. Y.; Luo, H. K. Nanocellulose: recent advances toward biomedical applications. Small. Sci. 2023, 3, 2200076.
101. Liu, Q.; Li, Q.; Hatakeyama, M.; Kitaoka, T. Proliferation and differential regulation of osteoblasts cultured on surface-phosphorylated cellulose nanofiber scaffolds. Int. J. Biol. Macromol. 2023, 253, 126842.
102. Shi, Q.; Li, Y.; Sun, J.; et al. The osteogenesis of bacterial cellulose scaffold loaded with bone morphogenetic protein-2. Biomaterials 2012, 33, 6644-9.
103. Badhe, R. V.; Chatterjee, A.; Bijukumar, D.; Mathew, M. T. Current advancements in bio-ink technology for cartilage and bone tissue engineering. Bone 2023, 171, 116746.
104. Janmohammadi, M.; Nazemi, Z.; Salehi, A. O. M.; et al. Cellulose-based composite scaffolds for bone tissue engineering and localized drug delivery. Bioact. Mater. 2023, 20, 137-63.
105. Schmitz, J. P.; Hollinger, J. O. The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin. Orthop. Relat. Res. 1986, 299-308.
106. Kumar, A.; Han, S. S. Efficacy of bacterial nanocellulose in hard tissue regeneration: a review. Materials. (Basel). 2021, 14, 4777.
107. Cooper, G. M.; Mooney, M. P.; Gosain, A. K.; Campbell, P. G.; Losee, J. E.; Huard, J. Testing the critical size in calvarial bone defects: revisiting the concept of a critical-size defect. Plast. Reconstr. Surg. 2010, 125, 1685-92.
108. Kandhola, G.; Park, S.; Lim, J. W.; et al. Nanomaterial-based scaffolds for tissue engineering applications: a review on graphene, carbon nanotubes and nanocellulose. Tissue. Eng. Regen. Med. 2023, 20, 411-33.
109. Sukul, M.; Nguyen, T. B.; Min, Y. K.; Lee, S. Y.; Lee, B. T. Effect of local sustainable release of BMP2-VEGF from nano-cellulose loaded in sponge biphasic calcium phosphate on bone regeneration. Tissue. Eng. Part. A. 2015, 21, 1822-36.
110. Nulty, J.; Freeman, F. E.; Browe, D. C.; et al. 3D bioprinting of prevascularised implants for the repair of critically-sized bone defects. Acta. Biomater. 2021, 126, 154-69.
111. Szivek, J. A.; Gonzales, D. A.; Wojtanowski, A. M.; Martinez, M. A.; Smith, J. L. Mesenchymal stem cell seeded, biomimetic 3D printed scaffolds induce complete bridging of femoral critical sized defects. J. Biomed. Mater. Res. B. Appl. Biomater. 2019, 107, 242-52.
112. Lv, N.; Zhou, Z.; Hou, M.; et al. Research progress of vascularization strategies of tissue-engineered bone. Front. Bioeng. Biotechnol. 2023, 11, 1291969.
113. Lopes, S. V.; Collins, M. N.; Reis, R. L.; Oliveira, J. M.; Silva-Correia, J. Vascularization approaches in tissue engineering: recent developments on evaluation tests and modulation. ACS. Appl. Bio. Mater. 2021, 4, 2941-56.
114. Min, K.; Tae, G. Cellular infiltration in an injectable sulfated cellulose nanocrystal hydrogel and efficient angiogenesis by VEGF loading. Biomater. Res. 2023, 27, 28.
115. Diaz-Gomez, L.; Gonzalez-Prada, I.; Millan, R.; et al. 3D printed carboxymethyl cellulose scaffolds for autologous growth factors delivery in wound healing. Carbohydr. Polym. 2022, 278, 118924.
116. Bakhtiary, N.; Liu, C.; Ghorbani, F. Bioactive inks development for osteochondral tissue engineering: a mini-review. Gels 2021, 7, 274.
117. Chiticaru, E. A.; Ioniță, M. Commercially available bioinks and state-of-the-art lab-made formulations for bone tissue engineering: a comprehensive review. Mater. Today. Bio. 2024, 29, 101341.
118. Sreedharan, M.; Vijayamma, R.; Liyaskina, E.; et al. Nanocellulose-based hybrid scaffolds for skin and bone tissue engineering: a 10-year overview. Biomacromolecules 2024, 25, 2136-55.
119. Park, S.; Hung, C. T.; Ateshian, G. A. Mechanical response of bovine articular cartilage under dynamic unconfined compression loading at physiological stress levels. Osteoarthritis. Cartilage. 2004, 12, 65-73.
120. Öhman-Mägi, C.; Holub, O.; Wu, D.; Hall, R. M.; Persson, C. Density and mechanical properties of vertebral trabecular bone-a review. JOR. Spine. 2021, 4, e1176.
121. Bose, S.; Roy, M.; Bandyopadhyay, A. Recent advances in bone tissue engineering scaffolds. Trends. Biotechnol. 2012, 30, 546-54.
122. Ghosh Dastidar, A.; Clarke, S. A.; Larrañeta, E.; Buchanan, F.; Manda, K. In vitro degradation of 3D-printed poly(l-lactide-co-glycolic acid) scaffolds for tissue engineering applications. Polymers. (Basel). 2023, 15, 3714.
123. Tan, A. R.; Hung, C. T. Concise review: mesenchymal stem cells for functional cartilage tissue engineering: taking cues from chondrocyte-based constructs. Stem. Cells. Transl. Med. 2017, 6, 1295-303.
124. Mukasheva, F.; Adilova, L.; Dyussenbinov, A.; Yernaimanova, B.; Abilev, M.; Akilbekova, D. Optimizing scaffold pore size for tissue engineering: insights across various tissue types. Front. Bioeng. Biotechnol. 2024, 12, 1444986.
125. Stenhamre, H.; Nannmark, U.; Lindahl, A.; Gatenholm, P.; Brittberg, M. Influence of pore size on the redifferentiation potential of human articular chondrocytes in poly(urethane urea) scaffolds. J. Tissue. Eng. Regen. Med. 2011, 5, 578-88.
126. Ng, H. Y.; Lee, K. -X. A.; Shen, Y. -F. Articular cartilage: structure, composition, injuries and repair. JSM. Bone. Joint. Dis. 2017, 1, 1010. https://www.jscimedcentral.com/public/assets/articles/bonejoint-1-1010.pdf (accessed-2026-1-20).
127. Huang, J.; Xiong, J.; Wang, D.; et al. 3D bioprinting of hydrogels for cartilage tissue engineering. Gels. 2021, 7, 144.
128. Sahranavard, M.; Sarkari, S.; Safavi, S.; Ghorbani, F. Three-dimensional bio-printing of decellularized extracellular matrix-based bio-inks for cartilage regeneration: a systematic review. Biomater. Transl. 2022, 3, 105-15.
129. Li, Y.; Xun, X.; Xu, Y.; et al. Hierarchical porous bacterial cellulose scaffolds with natural biomimetic nanofibrous structure and a cartilage tissue-specific microenvironment for cartilage regeneration and repair. Carbohydr. Polym. 2022, 276, 118790.
130. Dimaraki, A.; Díaz-payno, P. J.; Minneboo, M.; et al. Bioprinting of a zonal-specific cell density scaffold: a biomimetic approach for cartilage tissue engineering. Appl. Sci. 2021, 11, 7821.
131. Lu, J.; Gao, Y.; Cao, C.; et al. 3D bioprinted scaffolds for osteochondral regeneration: advancements and applications. Mater. Today. Bio. 2025, 32, 101834.
132. Chen, Z.; Khuu, N.; Xu, F.; et al. Printing structurally anisotropic biocompatible fibrillar hydrogel for guided cell alignment. Gels 2022, 8, 685.
133. Zinge, C.; Kandasubramanian, B. Nanocellulose based biodegradable polymers. Eur. Polym. J. 2020, 133, 109758.
134. Agbakoba, V. C.; Hlangothi, P.; Andrew, J.; John, M. J. Mechanical and shape memory properties of 3D-printed cellulose nanocrystal (CNC)-reinforced polylactic acid bionanocomposites for potential 4D applications. Sustainability 2022, 14, 12759.
135. Gardner, O. F.; Archer, C. W.; Alini, M.; Stoddart, M. J. Chondrogenesis of mesenchymal stem cells for cartilage tissue engineering. Histol. Histopathol. 2013, 28, 23-42.
136. Menezes, R.; Sherman, L.; Rameshwar, P.; Arinzeh, T. L. Scaffolds containing GAG-mimetic cellulose sulfate promote TGF-β interaction and MSC chondrogenesis over native GAGs. J. Biomed. Mater. Res. A. 2023, 111, 1135-50.
137. Jahani, A.; Nourbakhsh, M. S.; Ebrahimzadeh, M. H.; Mohammadi, M.; Yari, D.; Moradi, A. Biomolecules-loading of 3D-printed alginate-based scaffolds for cartilage tissue engineering applications: a review on current status and future prospective. Arch. Bone. Jt. Surg. 2024, 12, 92-101.
138. Mahzoon, S.; Detamore, M. S. Chondroinductive peptides: drawing inspirations from cell-matrix interactions. Tissue. Eng. Part. B. Rev. 2019, 25, 249-57.
139. Lohmander, L. S.; Englund, P. M.; Dahl, L. L.; Roos, E. M. The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am. J. Sports. Med. 2007, 35, 1756-69.
140. Lafuente-Merchan, M.; Ruiz-Alonso, S.; García-Villén, F.; et al. 3D bioprinted hydroxyapatite or graphene oxide containing nanocellulose-based scaffolds for bone regeneration. Macromol. Biosci. 2022, 22, e2200236.
141. Chen, X.; Yang, M.; Zhou, Z.; et al. An anti-oxidative bioink for cartilage tissue engineering applications. J. Funct. Biomater. 2024, 15, 37.
142. Veerubhotla, K.; Lee, C. H. Design of biodegradable 3D-printed cardiovascular stent. Bioprinting 2022, 26, e00204.
143. Liu, T. P.; Ha, P.; Xiao, C. Y.; et al. Updates on mesenchymal stem cell therapies for articular cartilage regeneration in large animal models. Front. Cell. Dev. Biol. 2022, 10, 982199.
144. Samavedi, S.; Diaz-Rodriguez, P.; Erndt-Marino, J. D.; Hahn, M. S. A Three-dimensional chondrocyte-macrophage coculture system to probe inflammation in experimental osteoarthritis. Tissue. Eng. Part. A. 2017, 23, 101-14.
145. Dar, M. A.; Xie, R.; Liu, J.; et al. Current paradigms and future challenges in harnessing nanocellulose for advanced applications in tissue engineering: a critical state-of-the-art review for biomedicine. Int. J. Mol. Sci. 2025, 26.
146. Radulescu, D. M.; Neacsu, I. A.; Grumezescu, A. M.; Andronescu, E. New insights of scaffolds based on hydrogels in tissue engineering. Polymers. (Basel). 2022, 14, 799.
147. Zhang, X.; Yin, X.; Luo, J.; et al. Novel hierarchical nitrogen-doped multiwalled carbon nanotubes/cellulose/nanohydroxyapatite nanocomposite as an osteoinductive scaffold for enhancing bone regeneration. ACS. Biomater. Sci. Eng. 2019, 5, 294-307.
148. Eftekhari, H.; Jahandideh, A.; Asghari, A.; Akbarzadeh, A.; Hesaraki, S. Assessment of polycaprolacton (PCL) nanocomposite scaffold compared with hydroxyapatite (HA) on healing of segmental femur bone defect in rabbits. Artif. Cells. Nanomed. Biotechnol. 2017, 45, 961-8.
149. Valentino, A.; Di Cristo, F.; Bosetti, M.; et al. Bioactivity and delivery strategies of phytochemical compounds in bone tissue regeneration. Appl. Sci. 2021, 11, 5122.
150. Guo, X.; Xi, L.; Yu, M.; et al. Regeneration of articular cartilage defects: therapeutic strategies and perspectives. J. Tissue. Eng. 2023, 14, 20417314231164765.
151. Zhu, X.; Chen, T.; Feng, B.; et al. Biomimetic bacterial cellulose-enhanced double-network hydrogel with excellent mechanical properties applied for the osteochondral defect repair. ACS. Biomater. Sci. Eng. 2018, 4, 3534-44.
152. Zhou, L.; Ho, K. K.; Zheng, L.; et al. A rabbit osteochondral defect (OCD) model for evaluation of tissue engineered implants on their biosafety and efficacy in osteochondral repair. Front. Bioeng. Biotechnol. 2024, 12, 1352023.
153. Nakagawa, S.; Ando, W.; Shimomura, K.; et al. Repair of osteochondral defects: efficacy of a tissue-engineered hybrid implant containing both human MSC and human iPSC-cartilaginous particles. NPJ. Regen. Med. 2023, 8, 59.
154. Chen, J.; Gong, C. Preparation of polyhydroxyalkanoate nanocomposites for biomedical applications. Polym. Int. 2025, 74, 405-14.
155. Franco, D.; Largoza, G.; Montenegro, T. S.; Gonzalez, G. A.; Hines, K.; Harrop, J. Lumbar total disc replacement: current usage. Neurosurg. Clin. N. Am. 2021, 32, 511-9.
156. Yang, J.; Wang, L.; Zhang, W.; et al. Reverse reconstruction and bioprinting of bacterial cellulose-based functional total intervertebral disc for therapeutic implantation. Small 2018, 14, 1702582.
157. Varma, D. M.; DiNicolas, M. S.; Nicoll, S. B. Injectable, redox-polymerized carboxymethylcellulose hydrogels promote nucleus pulposus-like extracellular matrix elaboration by human MSCs in a cell density-dependent manner. J. Biomater. Appl. 2018, 33, 576-89.
158. Lin, H. A.; Varma, D. M.; Hom, W. W.; et al. Injectable cellulose-based hydrogels as nucleus pulposus replacements: Assessment of in vitro structural stability, ex vivo herniation risk, and in vivo biocompatibility. J. Mech. Behav. Biomed. Mater. 2019, 96, 204-13.
159. Gulati, K.; Ding, C.; Guo, T.; Guo, H.; Yu, H.; Liu, Y. Craniofacial therapy: advanced local therapies from nano-engineered titanium implants to treat craniofacial conditions. Int. J. Oral. Sci. 2023, 15, 15.
160. Yazdanian, M.; Alam, M.; Abbasi, K.; et al. Synthetic materials in craniofacial regenerative medicine: a comprehensive overview. Front. Bioeng. Biotechnol. 2022, 10, 987195.
161. Desnica, J.; Vujovic, S.; Stanisic, D.; et al. Preclinical evaluation of bioactive scaffolds for the treatment of mandibular critical-sized bone defects: a systematic review. Appl. Sci. 2023, 13, 4668.
162. Almashhadani, A. Q.; Leh, C. P.; Chan, S. Y.; Lee, C. Y.; Goh, C. F. Nanocrystalline cellulose isolation via acid hydrolysis from non-woody biomass: Importance of hydrolysis parameters. Carbohydr. Polym. 2022, 286, 119285.
163. Kargupta, W.; Seifert, R.; Martinez, M.; Olson, J.; Tanner, J.; Batchelor, W. Sustainable production process of mechanically prepared nanocellulose from hardwood and softwood: a comparative investigation of refining energy consumption at laboratory and pilot scale. Ind. Crops. Prod. 2021, 171, 113868.
164. Zielińska, D.; Szentner, K.; Waśkiewicz, A.; Borysiak, S. Production of nanocellulose by enzymatic treatment for application in polymer composites. Materials. (Basel). 2021, 14, 2124.
165. Kaur, P.; Sharma, N.; Munagala, M.; et al. Nanocellulose: resources, physio-chemical properties, current uses and future applications. Front. Nanotechnol. 2021, 3, 747329.
166. Sanchez-salvador, J. L.; Blanco, A.; Duque, A.; Negro, M. J.; Manzanares, P.; Negro, C. Upscaling cellulose oxidation: integrating TEMPO-mediated oxidation in a pilot-plant twin-screw extruder for cellulose nanofibril production. Carbohydr. Polym. Tech. 2024, 7, 100525.
167. Rajendran, N.; Runge, T.; Bergman, R. D.; Nepal, P.; Houtman, C. Techno-economic analysis and life cycle assessment of cellulose nanocrystals production from wood pulp. Bioresour. Technol. 2023, 377, 4971-128955.
168. Cainglet, H. E.; Tanner, J.; Nasiri, N.; Browne, C.; Garnier, G.; Batchelor, W. Rapid cellulose nanomaterial characterisation by rheology. Cellulose 2023, 30, 4971-82.
169. Fu, Z.; Naghieh, S.; Xu, C.; Wang, C.; Sun, W.; Chen, X. Printability in extrusion bioprinting. Biofabrication 2021, 13, 033001.
170. Fattahi, R.; Mohebichamkhorami, F.; Taghipour, N.; Keshel, S. H. The effect of extracellular matrix remodeling on material-based strategies for bone regeneration: Review article. Tissue. Cell. 2022, 76, 101748.
171. Zhang, R.; Liu, Y.; Qi, Y.; et al. Self-assembled peptide hydrogel scaffolds with VEGF and BMP-2 enhanced in vitro angiogenesis and osteogenesis. Oral. Dis. 2022, 28, 723-33.
172. Liu, S.; Deng, Z.; Chen, K.; et al. Cartilage tissue engineering: From proinflammatory and anti‑inflammatory cytokines to osteoarthritis treatments (review). Mol. Med. Rep. 2022, 25, 99.
173. U.S. Food and Drug Administration. Technical Considerations for Additive Manufactured Medical Devices - Guidance for Industry and Food and Drug Administration Staff. 2017. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/technical-considerations-additive-manufactured-medical-devices. (accessed 2026-1-13).
174. ISO 13485:2016, Medical devices - quality management systems - requirements for regulatory purposes, 3rd ed. https://www.iso.org/standard/59752.html. (accessed 2026-1-13).
175. Xu, W.; Molino, B. Z.; Cheng, F.; et al. On low-concentration inks formulated by nanocellulose assisted with gelatin methacrylate (GelMA) for 3D printing toward wound healing application. ACS. Appl. Mater. Interfaces. 2019, 11, 8838-48.
176. Träger, A.; Naeimipour, S.; Jury, M.; Selegård, R.; Aili, D. Nanocellulose reinforced hyaluronan-based bioinks. Biomacromolecules 2023, 24, 3086-93.
177. Wang, Q. Karadas, Ã.; Rosenholm, J. M.; Xu, C.; Näreoja, T.; Wang, X. Bioprinting macroporous hydrogel with aqueous two-phase emulsion-based bioink: in vitro mineralization and differentiation empowered by phosphorylated cellulose nanofibrils. Adv. Funct. Mater. 2024, 34, 2400431.
178. Markstedt, K.; Mantas, A.; Tournier, I.; Martínez Ávila, H.; Hägg, D.; Gatenholm, P. 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 2015, 16, 1489-96.
179. Kamel, R.; El-wakil, N. A. A. Elkasabgy, N. Injectable hydrogel scaffolds composed of nanocellulose derived from sugarcane bagasse and combined with calcium for bone regeneration. RJPT. 2023, 3439-50.
180. Kim, Y. S.; Baek, J. W.; Jin, Z.; Jeon, H. C.; Han, M. W.; Lim, J. Y. Mechanical properties of a bone-like bioceramic-epoxy-based composite material with nanocellulose fibers. Materials. (Basel). 2023, 16, 739.







